• Title/Summary/Keyword: Real time control model

Search Result 1,394, Processing Time 0.03 seconds

Realization and Design of Predictor Algorithm and Evaluation of Numerical Method on Nonlinear Load Control Model (비선형 하중제어 모델의 예측기 설계 및 알고리즘 구현을 위한 수치연산 오차 분석과 평가)

  • Wang, Hyun-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.73-79
    • /
    • 2009
  • For the shake of control for movement object, control theory like neural network, nonlinear model predictive control(NMPC) is realized on digital high speed computer. Predictor of flight control system(FCS) based nonlinear model predictive control has to be satisfied with response for hard real-time to perform applications on each module in the FCS. Simultaneously, It gives a serious consideration accuracy to give full play to FCS's performance. Error of mathematical aspect affects realization of whole algorithm. But factors of bring mathematical error is not considered to calculate final accuracy on parameter of predictor. In this paper, Predictor was made using load control model on the digital computer for design FCS at hard real-time and is shown response time on realization algorithm. And is shown realization algorithm of high effective predictor over the accuracy. The predictor was realized on the load control model using Euler method, Heun method, Runge-Kutta and Taylor method.

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Real Time Control of an Induction Motor Using IMC Approach

  • Nghia, Duong Hoai;Nho, Nguyen Van;Bac, Nguyen Xuan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.456-463
    • /
    • 2009
  • The paper presents a method for controlling induction motors using a nonlinear internal model control (IMC) approach. The process model and the inverse model are developed in the rotor flux coordinate. The main advantage of the proposed method is that it easily specifies the performance (steady state error, transient response, etc.) and the robustness of the controller by means of the IMC filters. Simulation results illustrate the effectiveness of the proposed method. Results on a real time system show that the control system has good performance and robustness against changes in motor parameters (rotor and stator resistances, rotor and stator inductances, rotor inertia).

Real Time Simulation of the High Speed Multibody Tracted Vehicle for Track Tension Control (궤도장력 조절을 위한 다물체로 이루어진 고소궤도차량의 실시간 시뮬레이션)

  • 백승한;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • In case of high speed and high mobility multibody tracked vehicle, it is hard to develop the realtime simulation model for track tension control because of the hundreds of highly nonlinear equations. In order to design more trustworthy realtime simulator for track tension control, it is necessary to use off-line tracked vehicle model. In this study, a step by step procedure is presented to develop realtime simulation model based on off-line tracked vehicle model. Simulation results show that modified off-line multibody tracked vehicle model can be used for real time simulation to control the track tension.

  • PDF

Design of a Adaptive Controller of Industrial Robot with Eight Joint Based on Digital Signal Processor

  • Han, Sung-Hyun;Jung, Dong-Yean;Kim, Hong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.741-746
    • /
    • 2004
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Feedback flow control using the POD method on the backward facing step wall model

  • Cho, Sung-In;Lee, In;Lee, Seung-Jun;Lee, Choong Yun;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.428-434
    • /
    • 2012
  • Missiles suffer from flight instability problems at high angles of attack, since vortex flow over a fuselage cause lateral force to the body. To overcome this problem at a high angle of attack, the development of a real time vortex controller is needed. In this paper, Proper Orthogonal Decomposition (POD) and feedback controllers are developed for real time vortex control. The POD method is one of the most well known techniques for modeling low order models that represent the original full-order model. An adaptive control algorithm is used for real time control.

Cyclic Executive for Autonomous Driving with Real-Time Smart Cruise Control (순환실행체제를 이용한 무인 자율주행 실시간 스마트 크루즈 컨트롤)

  • Lee, Jaemyoun;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In recent years, much attention has been paid to the development of intelligent vehicles that integrate automotive technology into the information technology, with the aim of improving user friendliness and stability. The representative function is a autonomous driving and a cruise control. In designing such vehicles, it is critical to address the real-time issues (i.e., real-time vehicle control and timely response). However, previous research excluded the real-time scheduling. We develop a model car with unmanned cruise control, design the real-time scheduler using cyclic executive to easily adapt the model car, and provide some insight into potential solutions based on various experiments.

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.

A Study on the Real-Time Vision Control Method for Manipulator's position Control in the Uncertain Circumstance (불확실한 환경에서 매니퓰레이터 위치제어를 위한 실시간 비젼제어기법에 관한 연구)

  • Jang, W.-S.;Kim, K.-S.;Shin, K.-S.;Joo, C.;;Yoon, H.-K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.87-98
    • /
    • 1999
  • This study is concentrated on the development of real-time estimation model and vision control method as well as the experimental test. The proposed method permits a kind of adaptability not otherwise available in that the relationship between the camera-space location of manipulable visual cues and the vector of manipulator joint coordinates is estimate in real time. This is done based on a estimation model ta\hat generalizes known manipulator kinematics to accommodate unknown relative camera position and orientation as well as uncertainty of manipulator. This vision control method is roboust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the manipulator, and correct knowledge of position and orientation of CCD camera with respect to the manipulator base. Finally, evidence of the ability of real-time vision control method for manipulator's position control is provided by performing the thin-rod placement in space with 2 cues test model which is completed without a prior knowledge of camera or manipulator positions. This feature opens the door to a range of applications of manipulation, including a mobile manipulator with stationary cameras tracking and providing information for control of the manipulator event.

  • PDF

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.