• Title/Summary/Keyword: Real time Monitoring

Search Result 3,623, Processing Time 0.039 seconds

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Effect of Food Consumption Monitoring Using a Smartphone on Weight Changes in Obese Women (스마트폰을 이용한 식이섭취 모니터링이 비만여성의 체중변화에 미치는 효과 분석)

  • Kim, Young-Suk;On, Jeong-Ja;Hong, Yang-Hee;Hong, In-Sun;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.20 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • This study investigated the effect of food consumption monitoring and real-time communication-based weight control program using a smartphone on weight reduction and maintenance in obese women. This study consisted of two phases: an 8-week weight control program with food consumption monitoring and real-time communication using a smartphone and an 8-week follow-up. Sixteen obese female college students (>30% body fat) participated in this program, and we measured changes in body composition and dietary intake volume. Follow-up analysis focused on weight maintenance after 8 weeks of no contact. Total energy intake (P<0.01), body weight (P<0.001), percent body fat (P<0.001), body fat (P<0.05), and body mass index (P <0.001) decreased significantly after the 8-week weight control program. However, we could not observe total energy intake or body composition regain after the follow-up period. These results suggest that food consumption monitoring and real-time communication using a smartphone can be effective for weight control and maintenance.

Development of Real Time Smart Structure Monitoring System for Bridge Safety Maintenance using Sensor Network (센서 네트워크 기반 실시간 교량 안전관리를 위한 지능형 구조 건전성 모니터링시스템 개발)

  • Jo, Byung-Wan;Kim, Heon;Lee, Yun-Sung;Kim, Do-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.221-230
    • /
    • 2016
  • As structures' long term performances and users' safety have been highlighted, a new maintenance technique using IT has drawn attention around the globe. Therefore, throughout the paper, by analyzing bridge's static and dynamic data using wireless measuring sensor, a "real time smart bridge monitoring system" has developed. Smart bridge monitoring system is consists of three main parts a sensor that can measure major members' movement, a wireless system that informs the data from the sensor, and the database system that analysis the data. In order to test the performance of the system, five different were placed on the Olympic Bridge, Seoul. The power system of the sensors was replaced by self-sustain solar energy system. In order to validate data from the real time smart bridge monitoring system, the data was collected for a week from both wireless system and the wired system and the two data were compared to see the relevance.

Development of Real-Time Drought Monitoring and Prediction System on Korea & East Asia Region (한반도·동아시아 지역의 실시간 가뭄 감시 및 전망 시스템 개발)

  • Bae, Deg-Hyo;Son, Kyung-Hwan;Ahn, Joong-Bae;Hong, Ja-Young;Kim, Gwang-Soeb;Chung, Jun-Seok;Jung, Ui-Seok;Kim, Jong-Khun
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.267-277
    • /
    • 2012
  • The objectives of this study are to develop a real-time drought monitoring and prediction system on the East Asia domain and to evaluate the performance of the system by using past historical drought records. The system is mainly composed of two parts: drought monitoring for providing current drought indices with meteorological and hydrological conditions; drought outlooks for suggesting future drought indices and future hydrometeorological conditions. Both parts represent the drought conditions on the East Asia domain (latitude $21.15{\sim}50.15^{\circ}$, longitude $104.40{\sim}149.65^{\circ}$), Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$) and South Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$), respectively. The observed meteorological data from ASOS (Automated Surface Observing System) and AWS (Automatic Weather System) of KMA (Korean Meteorological Administration) and model-driven hydrological data from LSM (Land Surface model) are used for the real-time drought monitoring, while the monthly and seasonal weather forecast information from UM (Unified Model) of KMA are utilized for drought outlooks. For the evaluation of the system, past historical drought records occurred in Korea are surveyed and are compared with the application results of the system. The results demonstrated that the selected drought indices such as KMA drought index, SPI (3), SPI (6), PDSI, SRI and SSI are reasonable, especially, the performance of SRI and SSI provides higher accuracy that the others.

USN-based Real-Time Monitoring System for a Temporary Structure of Concrete Formwork (콘크리트 거푸집 가설구조물 공사 안전관리를 위한 USN 기반의 실시간 모니터링 시스템)

  • Moon, Sung-Woo;Yang, Byong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.159-166
    • /
    • 2012
  • During concrete placement, the formwork structure supports the weight of concrete mass. The complexity of the operation can cause concentrated workloads, which in turn brings about a collapse of the temporary structure. As a countermeasure, the operation needs to be constantly monitored to maintain safety and prevent accidents. This paper presents a USN (Ubiquitous Sensor Network)-based safety monitoring system for formwork construction. The system takes advantage of ubiquitous technology in monitoring the behavior of the formwork structure such as deflection, load weight, and tilting. The collected data are sent to the host computer wirelessly for real time monitoring. The data can be then compared with the allowed limits on guidelines. The comparison can indicate whether the concrete placement operation is executed in a safe condition.

Optical Line Monitoring System Using Optical Cable Closure (광케이블 접속함체를 이용한 광선로 감시시스템)

  • Jung, So-Ki;Chae, Woong-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.592-602
    • /
    • 2013
  • The purpose of this study is to optical cable closure and fiber line monitoring system. The current optical cable closure cases have not had any systems that help the central control station recognize opening as well as closing the cases in real-time when opening B2B and B2C lines. to solve this problem, it is considered to create systems that go off alarms, real-time fault location immediately, set alarms for open and close monitoring optical cable closure, and inspect regularly whether optical cables are deficient when monitoring the optical line in real-time and cutting them, in this paper, the monitoring system whose the central control station finds an optical signal block immediately and goes off the alarms when line workers separate components like a connector or a tray from the optical cable closure through OTDR. this study can contribute to stabilize the network quality through the quick and effective operation of the cables.

Monitoring of Main Tower of a Suspension bridge by GPS and IMU (GPS와 IMU에 의한 현수교 주탑 모니터링에 관한 연구)

  • Lee, Jae-one
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2006
  • Aplications of the real-time kinematic GPS surveying and inertial measurement unit have been beingRTK GPS allows the use of a static base station and remote rover unit to allow for data collectionwithin several seconds and in real time. It is useful for monitoring the behaviors of massive structureslike bridges. And this study purposed to implement a method of deciding the acurate dynaimc attitudeof structures by IMU. In this study, among GPS methods, we used RTK GPS to analyze the precisionof monitoring and then on the basis of it, we developed a monitoring system using RTK GPS anda deviation betwen observation values, X axis was 1mm, Y axis was 1mm and Z axis 2.2mm. I tturned out that it was possible to monitor and measure structures by RTK GPS and IMU.

  • PDF

Vaccine Cold Chain Monitoring System Using IoT Vaccine Fridge for Developing Countries (IoT 백신 냉장고를 사용한 개발도상국 백신 콜드체인 모니터링 시스템)

  • Lyu, Jang-Hyeon;Park, Samuel;Yu, Jong-Ha;Wang, Xin-Lin;Im, Hyuck-Soon;Rhee, Hyop-Seung;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In the process of vaccine delivery and vaccination, temperature is mostly controlled by an insulated containers containing ice. Moreover, amount of wasted vaccine is significant because the temperature of the vaccine is not properly controlled. A core challenge of vaccination is temperature data monitoring, since it is critical for managing and operating strategical vaccination by health organizations. In this research, a real-time monitoring vaccine carrier system was developed. Temperature, location, and power consumption data of the vaccine carrier were monitored and working performances of the vaccine carrier were tested in both Korea and Tanzania (Arusha and Kilimanjaro regions). For both places, Short Message Service (SMS) communication method was used to send information of the carrier's status. As a result, the monitoring system was able to transmit and receive real-time data of the vaccine carrier status while the vaccine carrier was tested. The vaccine status data can be accessed from any location through the cloud server and web-based user interface.

Remote Monitoring System for Environment Measurement in Industrial Field (산업현장의 환경계측을 위한 원격 모니터링 시스템)

  • Lee, Hwa-Yeong;Park, Yong-Jun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.25-27
    • /
    • 2022
  • Recently, with the development of the 4th industry, environmental issues such as air pollution have become serious, and in particular, a lot of air pollutants are generated in industrial sites. There are various types of air pollutants, and among them, carbon monoxide is essential for fires occurring in industrial sites, so it should be possible to monitor in real time. In addition, there is a need for a remote monitoring system that can measure various environmental factors other than air pollutants in real time. In this paper, we propose a monitoring system using wireless communication to remotely measure the industrial environment. The proposed monitoring system collects data to the Arduino of the transmitter by using a carbon monoxide sensor, a combustible gas sensor, a temperature and humidity sensor, and a flame sensor, and then transmits it to the receiver using ZigBee. The transmitted data is stored in the database of the receiver Raspberry Pi, and the stored data can be monitored in real time through the monitoring system.

  • PDF

Implementation of a Realtime Wireless Remote Control and Monitoring Systems (실시간 무선 원격 제어 및 모니터링 시스템의 구현)

  • Seong, Hae-Kyung;Lee, Moon-Goo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.93-102
    • /
    • 2010
  • Existing web based information service system solutions show limitations in mobile information services, as well as problems such as uncertain error messages, and difficulty providing swift assistance or real time emergency support. In order to solve these deficiencies, a realtime wireless remote control system has been designed and implemented in this thesis, which is capable of managing and monitoring remote systems using mobile communication devices (Mobile Phone, PDA, Smart Phone) for realtime control. Proposed systems are applied at remote places, for instance 'office building', and a nursery school like 'kindergarten'. In the case of implemented at office building, it can be managing and controlling at real time all sorts of the sensor information that are installed at office building system environment through wire(web environment) or wireless(mobile device). In the other case at kindergarten system that are providing the real-time wireless remote control and monitoring system can be monitoring activity of kindergarten children with a mobile phone of authentication user. The security functions of proposed systems include mobile device user authentication and target system access control. The proposed systems allow real-time user authentication function and system access control function that improve the security of resource administrators and mobile device users, and provides not only uninterrupted services, but also real time mobile service environments.