• Title/Summary/Keyword: Real terrain

Search Result 266, Processing Time 0.023 seconds

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets (다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석)

  • Lee, Dae-Geon;Shin, Young-Ha;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.91-108
    • /
    • 2022
  • In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.

Coverage Analysis of VHF Aviation Communication Network for Initial UAM Operations Considering Real Terrain Environments (실제 지형 환경을 고려한 초기 UAM 운용을 위한 VHF 항공통신 커버리지 분석)

  • Seul-Ae Gwon;Seung-Kyu Han;Young-Ho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2024
  • In the initial stages of urban air mobility (UAM) operations, compliance with existing visual flight rules and instrument flight regulations for conventional human-crewed aircraft is crucial. Additionally, voice communication between the on board pilot and relevant UAM stakeholders, including vertiports, is essential. Consequently, very high frequency (VHF) aviation voice communication must be consistently provided throughout all phases of UAM operations. This paper presents the results of the VHF communication coverage analysis for the initial UAM demonstration areas, encompassing the Hangang River and Incheon Ara-Canal corridors, as well as potential vertiport candidate locations. By considering the influence of terrain and buildings through the utilization of a digital surface model (DSM), communication quality prediction results are obtained for the analysis areas. The three-dimensional coverage analysis results indicate that stable coverage can be achieved within altitude corridors ranging from 300 m to 600 m. However, there are shaded areas in the low-altitude vertiport regions due to the impact of high-rise buildings. Therefore, additional research to ensure stable coverage around vertiports in the lower altitude areas is required.

Development of Real-time Underground Utilities Management System using Real-time Kinematics Systems and 3D Game Engines (RTK 시스템과 3차원 게임엔진을 이용한 실시간 지하 매설물 관리 시스템 개발)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.51-58
    • /
    • 2011
  • This paper describes a development of system that enables the user to manage and display from 3D viewer after at real-time saves attribute informations in DBMS using RTK systems and 3D game engines. The 3-dimensional game engines for this system will be input a attribute values of underground utilities which is measured from RTK systems with wireless network. This system which sees does to make be a possibility of managing creation, elimination, modification for the underground utilities from 3-dimensional viewer. The coordinates about the underground utilities measures with GPS. The base reference point for RTK systems uses one in reference points which are measured in existing. GPS coordinates revised a reference point in standard. The 3-dimensional game engines are having the function which manages the underground utilities with 3-dimensions. The function is the same as wireless network of RTK systems, 3-dimensional display for terrain and underground utilities, input and registration for attribute of underground utilities, etc. The system which sees will be able to prevent the various accident which is caused by in the spatial location coordinate which underground utilities is inaccurate. And the system which sees is accurate is a possibility of managing and the application possibility is high very. Finally, this system could be applied very usefully from the point of view which starts a new town development.

Electrical Resistivity Response Due to the Variation of Embankment Shape and Reservoir Level (제체형태와 수위에 따른 전기비저항 반응 연구)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • The distortion effect of electrical response for two-dimensional (2-D) DC resistivity method was verified in terms of 2-D inversion result of synthetic data obtained by three-dimensional (3-D) modeling, which is frequently applied to assess the safety of center core-type fill dam structure. The distortion effect is due to 2-D interpretation for 3-D structure. By the modeling analysis, we found that the water level is correctly described in the resistivity section around the middle part rather than each end side of the embankment due to the 3-D terrain effect, when the material of the embankment is assumed as horizontally uniform. And when we set the slope of outer rock fill part as uniform. the sharper the slope of the center core is, the more similar the resistivity section reflects. On the other hand, when the slope of the rock fill is steep, the resistivity section shows the water level at lower position than the real one, and the 3-D distortion effect at the end side of the embankment was enhanced.

Construction of Information System for Management of Cultural Heritage on the Web Using a Pilotless Helicopter Photogrammetry System (무인 헬기 사진측량시스템을 이용한 Web 상에서의 문화재 관리 정보시스템 구축)

  • 이종출;양인태;장호식;허종호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.389-394
    • /
    • 2004
  • Structure-typed cultural heritage, objects of preservation are positioned as one of the very important heritage in the nation, and the preservation of prototypical structures become influential in national development and against natural disaster. For this reason, Digital Close Range Photogrammetry has recently been diversely used. Despite its popular use, the measurement has limits that make it unsuitable for photographing precise cultural heritage situated at high mountainous terrain or where people can not approach easily. These high gigantic stone statues are among the preserved structure-typed cultural heritage. In order to supplement the limits, when using the measurement, a camera tripod with +30m, a ladder truck and a shore should be equipped, which means additional equipment leads to it being a waste of cost and time. In this vein, a device was developed in detail, using a RC Helicopter installed with a CCD video camera with ease of control, safety, equipment, carrying, movement and approach, then checked image shot by a wireless modem at real time and considered the economical efficiency without re-photographing. Next, the author digitized the images of the nationally designated structure-typed cultural heritage, used materials on their restoration as the third dimension in order to construct the integrated management-information system for cultural heritage. Through the above processes, this study can provide specific information on 3D images and 3D CAD sections of structured-typed cultural heritage for both the public and specialists on the web. Moreover, it suggests the foundation to restore the damaged cultural heritage in the future by aiming for their effective management and preservation.

  • PDF

Implementation of Layered Clouds considering Frame Rate and Reality in Real-time Flight Simulation (비행시뮬레이션에서 프레임율과 현실감을 고려한 계층형 구름 구현 방안)

  • Kang, Seok-Yoon;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.72-77
    • /
    • 2014
  • There are two main technologies to implement cloud effect in flight simulator, cloud modeling using particle system and texture mapping. In former case, this approach may cause a low frame rate while unrealistic cloud effect is observed in latter case. To Solve this problem, in this paper, we propose how to apply fog effect into camera to display more realistic cloud effect with high frame rate. The proposed method is tested with massive terrain database environment through implemented software by using OpenSceneGraph. As a result, compared to texture mapping method, the degree of difference on frame rate is 1 or 2Hz while the cloud effect is significantly improved as realistic as particle system.

Prediction Based Dynamic Level of Detail in Flight Simulator (항공시뮬레이터에서 예측 기반의 동적 LOD 적용방안)

  • Kim, DongJin;Lim, Juho;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1363-1368
    • /
    • 2016
  • Fast rendering speed is one of key functions to provide realistic scenes in flight simulator. However, since flight simulator mostly operates with high volume terrain data, rendering speed is reduced and changed very rapidly when it handles file containing too much vertexs. So, previous schemes make use of Level of Details (LOD) scheme to prevent this problem. But, since LOD is applied after the large number of vertexs are detected, transition between scenes is not completely smooth. To solve this problem, in this paper, we propose a new dynamic LOD scheme which controls LOD level in advance through prediction of vertex overload. To verify the proposed scheme, we implement the proposed scheme in our flight simulation through OpenSceneGraph(OSG) and identify the reduced number of vertexs and enhanced Frame Per Second (FPS) by comparing real data with predicted one.

Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea (한반도 남동해안 해상풍 모의에 적합한 경계층 물리방안 연구)

  • Kim Yoo-Keun;Jeong Ju-Hee;Bae Joo-Hyun;Song Sang-Keun;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1015-1026
    • /
    • 2005
  • The southeastern coastal area of the Korean peninsula has a complex terrain including an irregular coastline and moderately high mountains. This implies that mesoscale circulations such as mountain-valley breeze and land-sea breeze can play an important role in wind field and ocean forcing. In this study, to improve the accuracy of complex coastal rind field(surface wind and sea surface wind), we carried out the sensitivity experiments based on PBL schemes in PSU/NCAR Mesoscale Model (MM5), which is being used in the operational system at Korea Meteorological Administration. Four widely used PBL parameterization schemes in sensitivity experiments were chosen: Medium-Range Forecast (MRF), High-resolution Blackadar, Eta, and Gayno-Seaman scheme. Thereafter, case(2004. 8. 26 - 8. 27) of weak-gradient flows was simulated, and the time series and the vertical profiles of the simulated wind speed and wind direction were compared with those of hourly surface observations (AWS, BUOY) and QuikSCAT data. In the simulated results, the strength of rind speed of all schemes was overestimated in complex coastal regions, while that of about four different schemes was underestimated in islands and over the sea. Sea surface wind using the Eta scheme showed the highest wind speed over the sea and its distribution was similar to the observational data. Horizontal distribution of the simulated wind direction was very similar to that of real observational data in case of all schemes. Simulated and observed vertical distribution of wind field was also similar under boundary layer(about 1 km), however the simulated wind speed was underestimated in upper layer.