• Title/Summary/Keyword: Real quadratic fields of minimal type

Search Result 3, Processing Time 0.018 seconds

REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE

  • Byeon, Dongho;Keem, Jiae;Lee, Sangyoon
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.735-740
    • /
    • 2013
  • In this paper, we will introduce the notion of the real quadratic function fields of minimal type, which is a function field analogue to Kawamoto and Tomita's notion of real quadratic fields of minimal type. As number field cases, we will show that there are exactly 6 real quadratic function fields of class number one that are not of minimal type.

ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS

  • Kang, Pyung-Lyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.183-203
    • /
    • 2014
  • We examine fundamental units of quadratic function fields from continued fraction of $\sqrt{D}$. As a consequence, we give another proof of geometric analog of Ankeny-Artin-Chowla-Mordell conjecture and bounds for class number, and study real quadratic function fields of minimal type with quasi-period 4.