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ON THE EXISTENCE OF REAL QUADRATIC FIELDS

WITH ODD PERIOD OF MINIMAL TYPE

Takanobu Eguchi and Yasuhiro Kishi

Abstract. In this paper, under the ABC-conjecture, we show that there

exist infinitely many real quadratic fields with odd period of minimal type.

1. Introduction

In [3], Kawamoto and Tomita defined the notion of real quadratic fields with
period ℓ of minimal type by using the simple continued fraction expansions of
certain quadratic irrationals (see Definition in Section 2 below). Following that,
they showed that there exist exactly 51 real quadratic fields of class number 1
that are not of minimal type, with one more possible exception ([3, Proposition
4.4]). This is a very interesting result. On the other hand, as for the existence
of real quadratic fields of minimal type, the following have been known:

• Only Q(
√
5) is a real quadratic field with period 1 of minimal type

([3, Example 3.4]).
• There are no real quadratic fields with period 2, 3 of minimal type
([3, Example 3.5]).

• There exist infinitely many real quadratic fields with period ℓ of mini-
mal type for any even ℓ ≥ 4 ([3, Theorem 1.1], [2, Theorems 2, 3]).

Thus, we shall prove the following theorem by considering certain quadratic
irrationals.

Theorem 1. Assume the ABC-conjecture. For each odd integer ℓ (≥ 5), there
exist infinitely many real quadratic fields with period ℓ of minimal type.

Throughout this paper, we denote the ring of rational integers by Z and the
field of rational numbers by Q, respectively. For any non-negative integer n,
let Fn and Ln denote the Fibonacci and Lucas numbers, respectively, which
are defined by{

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2),

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 (n ≥ 2).
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2. Real quadratic fields of minimal type

In this section, we recall the definition of real quadratic fields of minimal
type ([3, Theorem 3.1, Definition 3.1]).

Let a1, a2, . . . , aℓ−1 be a symmetric sequence of ℓ− 1 (≥ 1) positive integers.
From this, we define nonnegative integers qn and rn (0 ≤ n ≤ ℓ) by

(2.1)

{
q0 = 0, q1 = 1, qn = an−1qn−1 + qn−2,

r0 = 1, r1 = 0, rn = an−1rn−1 + rn−2,

inductively. For brevity, we put

(2.2) A := qℓ, B := qℓ−1, C := rℓ−1,

and define polynomials g(x), h(x), f(x) by

(2.3) g(x) = Ax− (−1)ℓBC, h(x) = Bx− (−1)ℓC2, f(x) = g(x)2 + 4h(x).

Furthermore, let s0 be the least integer x for which g(x) > 0, that is, x >
(−1)ℓBC/A. We consider three cases separately:

(I) A ≡ 1 (mod 2), (II) (A,C) ≡ (0, 0) (mod 2), (III) (A,C) ≡ (0, 1) (mod 2).

When Case (I) or Case (II) occurs, we let s be any integer with s ≥ s0, and
put d := f(s)/4 and a0 := g(s)/2. Here, we choose an even integer s in Case
(I). Assume that

(2.4) g(s) > a1, . . . , aℓ−1

holds. Then, d and a0 are positive integers, d is non-square, a0 = [
√
d] and the

simple continued fraction expansion of
√
d is

(2.5)
√
d = [a0, a1, . . . , aℓ−1, 2a0]

with minimal period ℓ. Also, in Case (III), there is no positive integer d such

that (2.5) is the simple continued fraction expansion of
√
d.

When Case (I) or Case (III) occurs, we let s be any integer with s ≥ s0,
and put d := f(s) and a0 := (g(s) + 1)/2. Here, we choose an odd integer s in
Case (I). Assume that (2.4) holds. Then, d and a0 are positive integers, d is

non-square, d ≡ 1 (mod 4), a0 = [(1+
√
d)/2] and the simple continued fraction

expansion of (1 +
√
d)/2 is

(2.6)
1 +

√
d

2
= [a0, a1, . . . , aℓ−1, 2a0 − 1]

with minimal period ℓ. Also, in Case (II), there is no positive integer d such
that d ≡ 1 (mod 4) and (2.6) is the simple continued fraction expansion of

(1 +
√
d)/2.

Conversely, let d be a non-square positive integer and put ωd =
√
d or

ωd = (1 +
√
d)/2. Here we assume d ≡ 1 (mod 4) if ωd = (1 +

√
d)/2. Then it

is known that the simple continued fraction expansion is of the form

ωd = [a0, a1, a2, . . . , aℓ],
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where ℓ is the minimal period. Moreover, the sequence a1, a2, . . . , aℓ−1 is sym-
metric. From this, we get the quadratic polynomial f(x) and the integer s0
as above. Then d becomes uniquely of the form d = f(s)/4 with some integer
s ≥ s0, and (2.4) holds. If d ≡ 1 (mod 4) in addition, then the same thing is

true for (1 +
√
d)/2.

Definition ([3, Definition 3.1]). Let d be a non-square positive integer. As
we stated above, d is uniquely of the form d = f(s)/4 with some integer
s ≥ s0, where f(x) and s0 are obtained as above from the symmetric part

a1, a2, . . . , aℓ−1 of the simple continued fraction expansion of
√
d and ℓ is the

minimal period. If s = s0, that is, d = f(s0)/4 holds, then we say that d is a

positive integer with period ℓ of minimal type for
√
d. When d ≡ 1 (mod 4) in

addition, d is uniquely of the form d = f(s) with some integer s ≥ s0, where
f(x) and s0 are obtained as above from the symmetric part a1, a2, . . . , aℓ−1 of

the simple continued fraction expansion of (1 +
√
d)/2 and ℓ is the minimal

period. If s = s0, that is, d = f(s0) holds, then we say that d is a positive

integer with period ℓ of minimal type for (1 +
√
d)/2.

Furthermore, for a square-free positive integer d > 1, we say that Q(
√
d) is a

real quadratic field with period ℓ of minimal type, if d is a positive integer with
period ℓ of minimal type for

√
d when d ≡ 2, 3 (mod 4), and if d is a positive

integer with period ℓ of minimal type for (1 +
√
d)/2 when d ≡ 1 (mod 4).

3. Properties of Fibonacci and Lucas numbers

There are many properties of Fibonacci and Lucas numbers (see, for exam-
ple, [5]). We list them which we need in the proof of our theorems.

Lemma 1. For any n,m ∈ Z with n > m > 0, we have

Fn = αn−βn

√
5

,(3.1)

Fn−1Fn+1 − F 2
n = (−1)n,(3.2)

Ln+m − (−1)mLn−m = 5FnFm,(3.3)

F 2
n + F 2

n+1 = F2n+1,(3.4)

L2
n = 5F 2

n + (−1)n4(3.5)

and

(3.6) Fn ≡ 0 (mod 2) ⇐⇒ n ≡ 0 (mod 3),

where α = (1+
√
5)/2, β = (1−

√
5)/2. Moreover, if m is even (resp. m is odd),

then we have

(3.7)
Fn+1

Fn
<

Fm+1

Fm

(
resp.

Fm+1

Fm
<

Fn+1

Fn

)
.
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4. Positive integers with odd period of minimal type

Let L be a positive integer with L ≥ 2 and put ℓ = 2L+ 1. The goal of this
section is to construct positive integers d with period ℓ of minimal type such
that the symmetric part of the simple continued fraction expansion of

√
d or

(1 +
√
d)/2 is

1, . . . , 1︸ ︷︷ ︸
L−1

, F 2
Lu, F

2
Lu, 1, . . . , 1︸ ︷︷ ︸

L−1

with u ∈ Z, u > 0. From this sequence, we get

qn = Fn (0 ≤ n ≤ L), qL+1 = F 3
Lu+ FL−1,

rn = Fn−1 (1 ≤ n ≤ L), rL+1 = F 2
LFL−1u+ FL−2

by using (2.1). Then by [4, Lemma 2.3], the integers A,B,C defined by (2.2)
are given as

A = F 6
Lu

2 + 2F 3
LFL−1u+ F 2

L + F 2
L−1,

B = F 5
LFL−1u

2 + F 2
L(F

2
L−1 + FLFL−2)u+ FL−1(FL + FL−2),

C = F 4
LF

2
L−1u

2 + 2F 2
LFL−1FL−2u+ F 2

L−1 + F 2
L−2.

Define the polynomials g(x), h(x) and f(x) as (2.3). Then the integer s0 and
the value of f(s0) are given as follows:

Proposition 1. Let the notation be as above.
(1) If L = 2, then

s0 = −u2 + u− 1,

f(s0) = u4 + 2u3 + 3u2 − 2u+ 1.

(2) If L ≥ 3, then

s0 = −F 3
LF

3
L−1u

2 − F 2
L−1(3FLFL−2 − F 2

L−1)u− FL−2(2FL−1 − FL−2),

f(s0) = F 2
L+1F

6
Lu

4 + 2FL+1F
3
L(F

2
L+1 − FL+1FL + F 2

L)u
3

+ (8F 2
L+1F

2
L − 6FL+1F

3
L + 1)u2 − 2(F 2

L+1 − 5FL+1FL + F 2
L)u+ 5.

Proof. (1) Let L = 2. Then we have

A = u2 + 2u+ 2, B = u2 + u+ 1, C = u2 + 1.

Thus, s0 is the least integer x for which

x > − (u2 + u+ 1)(u2 + 1)

u2 + 2u+ 2
.

Hence by

− (u2 + u+ 1)(u2 + 1)

u2 + 2u+ 2
= −u4 + u3 + 2u2 + u+ 1

u2 + 2u+ 2
= −u2+u−2+

u+ 3

u2 + 2u+ 2

and

0 <
u+ 3

u2 + 2u+ 2
< 1,
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we get s0 = −u2 + u− 1. From this, moreover, we have

g(s0) = As0 +BC = u2 + u− 1,

h(s0) = Bs0 + C2 = u2,

and
f(s0) = g(s0)

2 + 4h(s0) = u4 + 2u3 + 3u2 − 2u+ 1.

(2) Let L ≥ 3 and put

S := −F 3
LF

3
L−1u

2 − F 2
L−1(3FLFL−2 − F 2

L−1)u− FL−2(2FL−1 − FL−2).

First, we calculate g(S). By straightforward calculations, we obtain

g(S) = AS +BC = c2u
2 + c1u+ c0,

where

c2 = F 8
L − F 7

LFL−1 − 3F 6
LF

2
L−1 + F 5

LF
3
L−1 + 3F 4

LF
4
L−1 + F 3

LF
5
L−1

= F 3
L(FL + FL−1)(F

2
L − FLFL−1 − F 2

L−1)
2,

c1 = F 6
L − F 5

LFL−1 − 2F 4
LF

2
L−1 − F 3

LF
3
L−1 + 2F 2

LF
4
L−1 + 3FLF

5
L−1 + F 6

L−1

= (F 2
L + FLFL−1 + F 2

L−1)(F
2
L − FLFL−1 − F 2

L−1)
2,

c0 = F 4
L − 2F 3

LFL−1 − F 2
LF

2
L−1 + 2FLF

3
L−1 + F 4

L−1

= (F 2
L − FLFL−1 − F 2

L−1)
2.

Here we remove FL−2 by substituting FL−2 = FL −FL−1. Now it follows from
(3.2) that

F 2
L − FLFL−1 − F 2

L−1 = (FL − FL−1)FL − F 2
L−1(4.1)

= FL−2FL − F 2
L−1 = (−1)L−1.

Thus, we obtain

c2 = F 3
L(FL + FL−1),

c1 = F 2
L + FLFL−1 + F 2

L−1,

c0 = 1,

and hence,

g(S) = F 3
L(FL + FL−1)u

2 + (F 2
L + FLFL−1 + F 2

L−1)u+ 1(4.2)

> F 3
L(FL + FL−1)u

2 > F 2
Lu.

In particular, we have g(S) > 0. Next, we calculate g(S − 1). Also, straight-
forward calculations give

g(S − 1) = A(S − 1) +BC = g(S)−A = c′2u
2 + c′1u+ c′0,

where

c′2 = F 3
L(FL + FL−1 − F 3

L),

c′1 = F 2
L + FLFL−1 + F 2

L−1 − 2F 3
LFL−1,
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c′0 = 1− F 2
L − F 2

L−1.

Noting that L ≥ 3, we can easily verify that all c′i are negative. Let us explain
that c′1 < 0 holds for example. Since L ≥ 3, we have FL > FL−1 ≥ 1 and
FL ≥ 2. Then we have

c′1 = F 2
L + FLFL−1 + F 2

L−1 − 2F 3
LFL−1

< F 2
L + F 2

L + F 2
L − 2F 3

L = F 2
L(3− 2FL) < 0.

Thus, we have g(S − 1) < 0. Therefore, we get

s0 = S = −F 3
LF

3
L−1u

2 − F 2
L−1(3FLFL−2 − F 2

L−1)u− FL−2(2FL−1 − FL−2).

Hence by FL−2 = FL − FL−1, FL−1 = FL+1 − FL and (4.1), we obtain

g(s0) = F 3
LFL+1u

2 + (F 2
L+1 − FL+1FL + F 2

L)u+ 1,

h(s0) = F 2
LFL+1(FL+1 − FL)u

2 + (−F 2
L+1 + 3FL+1FL − F 2

L)u+ 1,

and

f(s0) = F 2
L+1F

6
Lu

4 + 2FL+1F
3
L(F

2
L+1 − FL+1FL + F 2

L)u
3

+ (8F 2
L+1F

2
L − 6FL+1F

3
L + 1)u2 − 2(F 2

L+1 − 5FL+1FL + F 2
L)u+ 5.

Proposition 1 is now proved. □

First, we consider the case L = 2. In this case, we have

A ≡ u (mod 2),

C ≡ u+ 1 (mod 2),

s0 ≡ 1 (mod 2),

and hence, Case (III) occurs (resp. Case (I) occurs and s0 is odd) if u is even
(resp. u is odd). Moreover, if u ≥ 2, then we have

g(s0) = u2 + u− 1 > u = F 2
2 u > 1.

Next, we consider the case L ≥ 3. By using (3.6), we have

(FL, FL−1, FL−2) ≡


(0, 1, 1) (mod 2) if L ≡ 0 (mod 3),

(1, 0, 1) (mod 2) if L ≡ 1 (mod 3),

(1, 1, 0) (mod 2) if L ≡ 2 (mod 3).

Then we see that

A ≡ 1 (mod 2) ⇐⇒


L ≡ 0 (mod 3)

or “L ≡ 1 (mod 3), u : even”

or “L ≡ 2 (mod 3), u : odd”,

(A,C) ≡ (0, 0) (mod 2) does not occur,

(A,C) ≡ (0, 1) (mod 2) ⇐⇒

{
“L ≡ 1 (mod 3), u : odd”

or “L ≡ 2 (mod 3), u : even”
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and

s0 ≡

{
0 (mod 2) if “L ≡ 0 (mod 3), u : odd” or “L ≡ 2 (mod 3), u : odd”,

1 (mod 2) if “L ≡ 0 (mod 3), u : even” or “L ≡ 1 (mod 3), u : even”.

The following table summarizes the above:

L ≡ 0 (mod 3) L ≡ 1 (mod 3) L ≡ 2 (mod 3)
u : even Case (I), s0 : odd Case (I), s0 : odd Case (III)
u : odd Case (I), s0 : even Case (III) Case (I), s0 : even

Moreover, by (4.2), we have

g(s0) > F 2
Lu > 1.

Thus, it follows from what has been stated in Section 2 that the following holds:

Theorem 2. (1) For a positive integer u, put d := u4 +2u3 +3u2 − 2u+1. If

u ≥ 2, then d is a positive integer with period 5 of minimal type for (1+
√
d)/2

and the continued fraction expansion of (1 +
√
d)/2 is of the form

(1 +
√
d)/2 = [a0, 1, u, u, 1, 2a0 − 1],

where a0 = (u2 + u)/2.
(2) Let L ≥ 3. For a positive integer u, put

d := F 2
L+1F

6
Lu

4 + 2FL+1F
3
L(F

2
L+1 − FL+1FL + F 2

L)u
3

+ (8F 2
L+1F

2
L − 6FL+1F

3
L + 1)u2 − 2(F 2

L+1 − 5FL+1FL + F 2
L)u+ 5.

If either u ≡ 0 (mod 2) or “u ≡ 1 (mod 2) and L ≡ 1 (mod 3)”, then d is

a positive integer with period 2L + 1 of minimal type for (1 +
√
d)/2 and the

continued fraction expansion of (1 +
√
d)/2 is of the form

(1 +
√
d)/2 = [a0, 1, . . . , 1︸ ︷︷ ︸

L−1

, F 2
Lu, F

2
Lu, 1, . . . , 1︸ ︷︷ ︸

L−1

, 2a0 − 1],

where a0 = {F 3
LFL+1u

2 + (F 2
L+1 − FL+1FL + F 2

L)u + 2}/2. Similarly, for a
positive integer u, put

d := {F 2
L+1F

6
Lu

4 + 2FL+1F
3
L(F

2
L+1 − FL+1FL + F 2

L)u
3

+ (8F 2
L+1F

2
L − 6FL+1F

3
L + 1)u2 − 2(F 2

L+1 − 5FL+1FL + F 2
L)u+ 5}/4.

If u ≡ 1 (mod 2) and L ≡ 0, 2 (mod 3), then d is a positive integer with period

2L + 1 of minimal type for
√
d and the continued fraction expansion of

√
d is

of the form √
d = [a0, 1, . . . , 1︸ ︷︷ ︸

L−1

, F 2
Lu, F

2
Lu, 1, . . . , 1︸ ︷︷ ︸

L−1

, 2a0],

where a0 = {F 3
LFL+1u

2 + (F 2
L+1 − FL+1FL + F 2

L)u+ 1}/2.
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5. Proof of the main theorem

In this section, we shall give a proof of Theorem 1. This is obtained as a
consequence of a theorem of Granville.

ABC-conjecture. Let a, b, c be coprime positive integers satisfying a+ b = c.
Then for any ε > 0, there exists a positive constant Cε such that

c < CεN(a, b, c)1+ε,

where N(a, b, c) is the product of the distinct primes dividing abc.

Theorem 3 ([1, Theorem 1]). Suppose that φ(X) ∈ Z[X], without any repeated
roots. Let κ be the largest integer which divides φ(n) for all integers n, and
select κ′ to be the smallest divisor of κ for which κ/κ′ is square-free. If the
ABC-conjecture is true, then there are ∼ cφN positive integers n ≤ N for
which φ(n)/κ′ is square-free, where cφ is a certain positive constant.

5.1. The case ℓ = 5

From Theorem 2(1), it is sufficient to show that there are infinitely many
integers u (≥ 2) for which u4+2u3+3u2− 2u+1 is square-free. To prove this,
let us apply Theorem 3 to

φ(X) := X4 + 2X3 + 3X2 − 2X + 1.

Since the discriminant of φ(X) is 4352, φ(X) does not have repeated roots.
Since φ(0) = 1, it holds κ = 1. Thus, we can take κ′ = 1 and hence, there are
infinitely many positive integers n for which φ(n) is square-free, as desired.

5.2. The case ℓ ≥ 7

Let L ≥ 3. It follows from Theorem 2(2) that for a positive integer u′,

d := F 2
L+1F

6
L(2u

′)4 + 2FL+1F
3
L(F

2
L+1 − FL+1FL + F 2

L)(2u
′)3

+ (8F 2
L+1F

2
L − 6FL+1F

3
L + 1)(2u′)2

− 2(F 2
L+1 − 5FL+1FL + F 2

L)(2u
′) + 5

is a positive integer with period ℓ = 2L + 1 of minimal type for (1 +
√
d)/2.

Thus, as in Subsection 5.1, let us apply Theorem 3 to

φ(X) := 24F 2
L+1F

6
LX

4 + 24FL+1F
3
L(F

2
L+1 − FL+1FL + F 2

L)X
3

+ 22(8F 2
L+1F

2
L − 6FL+1F

3
L + 1)X2

− 22(F 2
L+1 − 5FL+1FL + F 2

L)X + 5.

Now we put a := FL+1, b := FL for brevity. Then the discriminant disc(φ) of
φ(X) is

disc(φ) = 216a2b6{16b3a13 − 224b4a12 + 336b5a11 + (1520b6 + 16b2)a10

+ (−1696b7 − 312b3)a9 + (−4672b8 + 800b4 + 1)a8
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+ (1872b9 + 1360b5 − 12b)a7 + (6864b10 − 2768b6 − 94b2)a6

+ (1312b11 − 2984b7 + 592b3)a5

+ (−3456b12 + 2208b8 + 75b4 − 6)a4

+ (−2160b13 + 2704b9 − 1040b5 + 20b)a3

+ (−336b14 + 400b10 − 174b6 + 118b2)a2

+ (16b15 − 120b11 + 196b7 − 100b3)a+ (b8 − 6b4 + 5)}.

We have disc(φ) > 0, which will be proved in the next subsection. Therefore,
φ(X) does not have repeated roots. Moreover, we have φ(2) ̸≡ 0 (mod 5) for
any L. Indeed, this follows from the following table:

L (mod 20) 0 1 2 3 4 5 6
(FL, FL+1) (mod 5) (0, 1) (1, 1) (1, 2) (2, 3) (3, 0) (0, 3) (3, 3)

φ(2) (mod 5) 3 1 3 1 4 4 2

L (mod 20) 7 8 9 10 11 12 13
(FL, FL+1) (mod 5) (3, 1) (1, 4) (4, 0) (0, 4) (4, 4) (4, 3) (3, 2)

φ(2) (mod 5) 2 1 3 3 1 3 1

L (mod 20) 14 15 16 17 18 19
(FL, FL+1) (mod 5) (2, 0) (0, 2) (2, 2) (2, 4) (4, 1) (1, 0)

φ(2) (mod 5) 4 4 2 2 1 3

From this, together with φ(0) = 5, it also holds κ = 1, and hence, we can
take κ′ = 1. Thus, there are infinitely many positive integers u′ for which
d = φ(u′) is square-free, as desired. The proof of Theorem 1 is complete
provided disc(φ) > 0 for any L (≥ 3).

5.3. The positivity of the discriminant

The goal of this section is to prove the following:

Proposition 2. Under the notations of Subsection 5.2, we have disc(φ) > 0
for any L (≥ 3).

Proof. Put D(L) := disc(φ)/(216a2b6). In case of 3 ≤ L ≤ 7, we can verify

D(3) = 26920512 > 0,

D(4) = 8102250000 > 0,

D(5) = 2684459417600 > 0,

D(6) = 855360599155712 > 0,

D(7) = 276546455581228560 > 0

by straightforward calculations.
In the following, we consider the case L ≥ 8. Now let us split D(L) into five

polynomials:

D(L) = f1(L) + f2(L) + g1(L) + g2(L) + h(L),
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where

f1(L) = 16b3a13 + 336b5a11 − 1696b7a9 + 1872b9a7 + 1312b11a5

− 2160b13a3 + 16b15a,

f2(L) = −224b4a12 + 1520b6a10 − 4672b8a8 + 6864b10a6 − 3456b12a4

− 336b14a2,

g1(L) = 16b2a10 + 800b4a8 − 2768b6a6 + 2208b8a4 + 400b10a2,

g2(L) = −312b3a9 + 1360b5a7 − 2984b7a5 + 2704b9a3 − 120b11a,

h(L) = a8 − 12ba7 − 94b2a6 + 592b3a5 + 75b4a4 − 1040b5a3 − 174b6a2

+ 196b7a+ b8 − 6a4 + 20ba3 + 118b2a2 − 100b3a− 6b4 + 5.

Since L ≥ 8, it follows from (3.7) that

21

13
=

F8

F7
<

a

b
≤ F9

F8
=

34

21
,

and hence,

(5.1)
21

13
b < a ≤ 34

21
b.

Therefore, we obtain

g1(L) > 16b2
(
21

13
b

)10

+ 800b4
(
21

13
b

)8

− 2768b6
(
34

21
b

)6

+ 2208b8
(
21

13
b

)4

+ 400b10
(
21

13
b

)2

=
62090306674135877152096

11823588092798847729
b12

> 0,

h(L) >

(
21

13
b

)8

− 12b

(
34

21
b

)7

− 94b2
(
34

21
b

)6

+ 592b3
(
21

13
b

)5

+ 75b4
(
21

13
b

)4

− 1040b5
(
34

21
b

)3

− 174b6
(
34

21
b

)2

+ 196b7
(
21

13
b

)
+ b8 − 6

(
34

21
b

)4

+ 20b

(
21

13
b

)3

+ 118b2
(
21

13
b

)2

− 100b3
(
34

21
b

)
− 6b4 + 5

=
231902351941769392279

489734418044922687
b8 +

26076650980

142424919
b4 + 5

> 0.
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From now on, we shall prove f1(L)+f2(L)+g2(L) > 0. By taking n = L+1
and m = L in (3.3), we have

(5.2) 5ab = 5FL+1FL = L2L+1 − (−1)LL1 = L2L+1 − (−1)L.

Moreover, by taking n = L in (3.4), we have

(5.3) a2 + b2 = F2L+1.

Furthermore, by taking n = 2L+ 1 in (3.5), we have

(5.4) L2
2L+1 = 5F 2

2L+1 + (−1)2L+14 = 5F 2
2L+1 − 4.

Here, it follows from (5.3) that

(5F 2
2L+1 − 4)−

(√
5F2L+1 −

1

b2

)2

=
2
√
5F2L+1

b2
− 1

b4
− 4

=
2
√
5(a2 + b2)b2 − 1− 4b4

b4

=
(2
√
5− 4)b4 + (2

√
5a2b2 − 1)

b4

> 0.

From this, together with (5.4), we have

(5.5) L2L+1 >
√
5F2L+1 −

1

b2
.

Hence by (5.2), (5.3), (5.5), we get

ab =
1

5
(L2L+1 − (−1)L) >

1

5
(
√
5F2L+1 −

1

b2
− (−1)L)(5.6)

=
1

5
(
√
5(a2 + b2)− 1

b2
− (−1)L).

By putting

t(L) := (f1(L) + g2(L))/(ab),

it holds from (5.1) and b > 2 that

t(L) = 16b2a12 + 336b4a10 − 1696b6a8 + 1872b8a6 + 1312b10a4 − 2160b12a2

+ 16b14 − 312b2a8 + 1360b4a6 − 2984b6a4 + 2704b8a2 − 120b10

> 16b2
(
21

13
b

)12

+ 336b4
(
21

13
b

)10

− 1696b6
(
34

21
b

)8

+ 1872b8
(
21

13
b

)6

+ 1312b10
(
21

13
b

)4

− 2160b12
(
34

21
b

)2

+ 16b14 − 312b2
(
34

21
b

)8

+ 1360b4
(
21

13
b

)6

− 2984b6
(
34

21
b

)4

+ 2704b8
(
21

13
b

)2

− 120b10

=
1920935609759164060943190560

881200196968205322394641
b14 − 251541467016412596680

60854572656469683
b10



790 T. EGUCHI AND Y. KISHI

> 2179b14 − 4134b10

> 0.

Then by (5.6), we obtain

f1(L) + f2(L) + g2(L) = f2(L) + abt(L)(5.7)

> f2(L) +
1

5
(
√
5(a2 + b2)− 1

b2
− (−1)L)t(L).

Now we consider the value of a2 − α2b2 by using (3.1). Noting αβ = −1,

1 + α2 = (5 +
√
5)/2 and α2 − β2 =

√
5, we have

a2 − α2b2 =

(
αL+1 − βL+1

√
5

)2

− α2

(
αL − βL

√
5

)2

=
−2(−1)L+1 + β2L+2 + 2(−1)Lα2 − α2β2L

5

= (−1)L
2

5
(1 + α2)− β2L

5
(α2 − β2)

= (−1)L
2

5
· 5 +

√
5

2
− β2L

5

√
5

= (−1)L
(
1 +

1√
5

)
− 1√

5α2L
.

Therefore, by putting e := 1/(
√
5α2L) > 0, it holds that

a2 = α2b2 + (−1)L(1 +
1√
5
)− e.

By substituting this into the right hand side of (5.7) and arranging the terms
in descending powers of b, we get

f2(L) +
1

5
(
√
5(a2 + b2)− 1

b2
− (−1)L)t(L)

= − 224b4a12 + 1520b6a10 − 4672b8a8 + 6864b10a6 − 3456b12a4 − 336b14a2

+
1

5
(
√
5(a2 + b2)− 1

b2
− (−1)L)(16b2a12 + 336b4a10 − 1696b6a8

+ 1872b8a6 + 1312b10a4 − 2160b12a2 + 16b14 − 312b2a8 + 1360b4a6

− 2984b6a4 + 2704b8a2 − 120b10)

= c′′14b
14 + c′′12b

12 + c′′10b
10 + c′′8b

8 + c′′6b
6 + c′′4b

4 + c′′2b
2 + c′′0 ,

where

c′′14 = (−160
√
5− 160)e,

c′′12 = (1672
√
5 + 3800)e2 + (−1)L(−4288

√
5− 9792)e+ (1248

√
5 + 2656),

c′′10 = (−2168
√
5− 5704)e3 + (−1)L(46128/5

√
5 + 21616)e2

+ (−9024
√
5− 98944/5)e+ (−1)L(576

√
5 + 4032/5),
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c′′8 = (7296
√
5/5 + 1728)e4 + (−1)L(−33168

√
5/5− 57408/5)e3

+ (217588
√
5/25 + 84548/5)e2

+ (−1)L(−16144
√
5/25− 11696/25)e

+ (−81056
√
5/25− 188544/25),

c′′6 = (376
√
5/5− 1064)e5 + (−1)L(448

√
5 + 23056/5)e4

+ (−7264
√
5/25− 25608/5)e3

+ (−1)L(−114696
√
5/25− 175984/25)e2

+ (1050656
√
5/125 + 441536/25)e

+ (−1)L(−505808
√
5/125− 223088/25),

c′′4 = (104
√
5− 168)e6 + (−1)L(−2064

√
5/5 + 480)e5

+ (1108
√
5/5− 7724/5)e4

+ (−1)L(52016
√
5/25 + 32032/5)e3

+ (−134064
√
5/25− 315704/25)e2

+ (−1)L(609584
√
5/125 + 271216/25)e

+ (−186576
√
5/125− 81968/25),

c′′2 = (−16
√
5/5)e7 + (−1)L(112

√
5/5 + 96/5)e6 + (−24

√
5/5− 96/5)e5

+ (−1)L(−296
√
5− 2384/5)e4 + (21584

√
5/25 + 9024/5)e3

+ (−1)L(−25296
√
5/25− 292944/125)e2

+ (286944
√
5/625 + 139808/125)e

+ (−1)L(−16064
√
5/625− 9792/125),

c′′0 = (−16/5)e6 + (−1)L(96
√
5/25 + 96/5)e5 + (−96

√
5/5 + 24/5)e4

+ (−1)L(−224
√
5/25− 736/5)e3 + (2592

√
5/25 + 8544/25)e2

+ (−1)L(−82944
√
5/625− 8448/25)e+ (33344

√
5/625 + 78144/625).

We remark that by L ≥ 8 and [
√
5α16] = 4935, we have

(5.8) 0 < e =
1√
5α2L

<
1√
5α16

<
1

4935
.

(i) Suppose that L is even. Then by (5.8), we have

c′′12 = (1672
√
5 + 3800)e2 + (−4288

√
5− 9792)e+ (1248

√
5 + 2656)

> 0 + (−4) + (1248
√
5 + 2656)

= 1248
√
5 + 2652,
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c′′10 = (−2168
√
5− 5704)e3 + (46128/5

√
5 + 21616)e2

+ (−9024
√
5− 98944/5)e+ (576

√
5 + 4032/5)

> (−1) + 0 + (−9) + (576
√
5 + 4032/5)

> 0,

c′′8 = (7296
√
5/5 + 1728)e4 + (−33168

√
5/5− 57408/5)e3

+ (217588
√
5/25 + 84548/5)e2 + (−16144

√
5/25− 11696/25)e

+ (−81056
√
5/25− 188544/25)

> 0 + (−1) + 0 + (−1) + (−81056
√
5/25− 188544/25)

= −81056
√
5/25− 188594/25,

c′′6 = (376
√
5/5− 1064)e5 + (448

√
5 + 23056/5)e4

+ (−7264
√
5/25− 25608/5)e3 + (−114696

√
5/25− 175984/25)e2

+ (1050656
√
5/125 + 441536/25)e+ (−505808

√
5/125− 223088/25)

> (−1) + 0 + (−1) + (−1) + 0 + (−505808
√
5/125− 223088/25)

= −505808
√
5/125− 223163/25,

c′′4 = (104
√
5− 168)e6 + (−2064

√
5/5 + 480)e5 + (1108

√
5/5− 7724/5)e4

+ (52016
√
5/25 + 32032/5)e3 + (−134064

√
5/25− 315704/25)e2

+ (609584
√
5/125 + 271216/25)e+ (−186576

√
5/125− 81968/25)

> 0 + (−1) + (−1) + 0 + (−1) + 0 + (−186576
√
5/125− 81968/25)

= −186576
√
5/125− 82043/25,

c′′2 = (−16
√
5/5)e7 + (112

√
5/5 + 96/5)e6 + (−24

√
5/5− 96/5)e5

+ (−296
√
5− 2384/5)e4 + (21584

√
5/25 + 9024/5)e3

+ (−25296
√
5/25− 292944/125)e2 + (286944

√
5/625 + 139808/125)e

+ (−16064
√
5/625− 9792/125)

> (−1) + 0 + (−1) + (−1) + 0 + (−1) + 0 + (−16064
√
5/625− 9792/125)

= −16064
√
5/625− 10292/125,

c′′0 = (−16/5)e6 + (96
√
5/25 + 96/5)e5 + (−96

√
5/5 + 24/5)e4

+ (−224
√
5/25− 736/5)e3 + (2592

√
5/25 + 8544/25)e2

+ (−82944
√
5/625− 8448/25)e+ (33344

√
5/625 + 78144/625)

> (−1) + 0 + (−1) + (−1) + 0 + (−1) + (33344
√
5/625 + 78144/625)

> 0.
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Since βL > 0 by 2 | L, moreover, we have

eb2 =
1√
5α2L

(
αL − βL

√
5

)2

<
1√
5α2L

(
αL

√
5

)2

=
1

5
√
5
.

Therefore, by noting b ≥ 21, we obtain

f2(L) +
1

5
(
√
5(a2 + b2)− 1

b2
− 1)t(L)(5.9)

> (−160
√
5− 160)eb14 + (1248

√
5 + 2652)b12

+ (−81056
√
5/25− 188594/25)b8 + (−505808

√
5/125− 223163/25)b6

+ (−186576
√
5/125− 82043/25)b4 + (−16064

√
5/625− 10292/125)b2

> (−160
√
5− 160)b12 · 1

5
√
5
+ (1248

√
5 + 2652)b12

+ (−81056
√
5/25− 188594/25)b8 + (−505808

√
5/125− 223163/25)b6

+ (−186576
√
5/125− 82043/25)b4 + (−16064

√
5/625− 10292/125)b2

= (6208
√
5/5 + 2620)b12

+ (−81056
√
5/25− 188594/25)b8 + (−505808

√
5/125− 223163/25)b6

+ (−186576
√
5/125− 82043/25)b4 + (−16064

√
5/625− 10292/125)b2

> (6208
√
5/5 + 2620)b8 · 214

+ (−81056
√
5/25− 188594/25)b8 + (−505808

√
5/125− 223163/25)b8

+ (−186576
√
5/125− 82043/25)b8 + (−16064

√
5/625− 10292/125)b8

= (150911751616
√
5/625 + 63690048208/125)b8

> 0.

Then by (5.7) and (5.9), we get f1(L) + f2(L) + g2(L) > 0.
(ii) Suppose that L is odd. Then again by (5.8), we have

c′′12 = (1672
√
5 + 3800)e2 + (4288

√
5 + 9792)e+ (1248

√
5 + 2656)

> 0 + 0 + (1248
√
5 + 2656)

= 1248
√
5 + 2656,

c′′10 = (−2168
√
5− 5704)e3 + (−46128/5

√
5− 21616)e2

+ (−9024
√
5− 98944/5)e+ (−576

√
5− 4032/5)

> (−1) + (−1) + (−9) + (−576
√
5− 4032/5)

= −576
√
5− 4087/5,

c′′8 = (7296
√
5/5 + 1728)e4 + (33168

√
5/5 + 57408/5)e3

+ (217588
√
5/25 + 84548/5)e2 + (16144

√
5/25 + 11696/25)e



794 T. EGUCHI AND Y. KISHI

+ (−81056
√
5/25− 188544/25)

> 0 + 0 + 0 + 0 + (−81056
√
5/25− 188544/25)

> −81056
√
5/25− 188544/25,

c′′6 = (376
√
5/5− 1064)e5 + (−448

√
5− 23056/5)e4

+ (−7264
√
5/25− 25608/5)e3 + (114696

√
5/25 + 175984/25)e2

+ (1050656
√
5/125 + 441536/25)e+ (505808

√
5/125 + 223088/25)

> (−1) + (−1) + (−1) + 0 + 0 + (505808
√
5/125 + 223088/25)

> 0,

c′′4 = (104
√
5− 168)e6 + (2064

√
5/5− 480)e5 + (1108

√
5/5− 7724/5)e4

+ (−52016
√
5/25− 32032/5)e3 + (−134064

√
5/25− 315704/25)e2

+ (−609584
√
5/125− 271216/25)e+ (−186576

√
5/125− 81968/25)

> (−1) + 0 + (−1) + (−1) + (−1) + (−5) + (−186576
√
5/125− 81968/25)

> −186576
√
5/125− 82193/25,

c′′2 = (−16
√
5/5)e7 + (−112

√
5/5− 96/5)e6 + (−24

√
5/5− 96/5)e5

+ (296
√
5 + 2384/5)e4 + (21584

√
5/25 + 9024/5)e3

+ (25296
√
5/25 + 292944/125)e2 + (286944

√
5/625 + 139808/125)e

+ (16064
√
5/625 + 9792/125)

> (−1) + (−1) + (−1) + 0 + 0 + 0 + 0 + (16064
√
5/625 + 9792/125)

> 0,

c′′0 = (−16/5)e6 + (−96
√
5/25− 96/5)e5 + (−96

√
5/5 + 24/5)e4

+ (224
√
5/25 + 736/5)e3 + (2592

√
5/25 + 8544/25)e2

+ (82944
√
5/625 + 8448/25)e+ (33344

√
5/625 + 78144/625)

> (−1) + (−1) + (−1) + 0 + 0 + 0 + (33344
√
5/625 + 78144/625)

> 0.

Since 2 ∤ L and 2 + β2L < 5, moreover, it holds that

eb2 =
1√
5α2L

(
αL − βL

√
5

)2

=
1√
5α2L

· α
2L − 2(−1)L + β2L

5

=
1

5
√
5
+

2 + β2L

5
√
5α2L

<
1

5
√
5
+

1√
5α2L

=
1

5
√
5
+ e,



REAL QUADRATIC FIELDS WITH ODD PERIOD OF MINIMAL TYPE 795

and hence,

eb4 <

(
1

5
√
5
+ e

)
b2 =

b2

5
√
5
+ eb2 <

b2

5
√
5
+

1

5
√
5
+ e

<
b2

5
√
5
+

1

5
√
5
+

1

4935
<

b2

5
√
5
+

1

10
.

Therefore, again by b ≥ 21, we obtain

f2(L) +
1

5
(
√
5(a2 + b2)− 1

b2
+ 1)t(L)(5.10)

> (−160
√
5− 160)eb14+(1248

√
5 + 2656)b12+(−576

√
5− 4087/5)b10

+ (−81056
√
5/25− 188544/25)b8+(−186576

√
5/125− 82193/25)b4

> (−160
√
5− 160)b10 ·

(
b2

5
√
5
+

1

10

)
+(1248

√
5 + 2656)b12

+ (−576
√
5− 4087/5)b10+(−81056

√
5/25− 188544/25)b8

+ (−186576
√
5/125− 82193/25)b4

= (6208
√
5/5 + 2624)b12 + (−592

√
5− 4167/5)b10

+ (−81056
√
5/25− 188544/25)b8+(−186576

√
5/125−82093/25)b4

> (6208
√
5/5 + 2624)b10 · 212+(−592

√
5−4167/5)b10

+ (−81056
√
5/25− 188544/25)b10+(−186576

√
5/125−82093/25)b10

= (67777344
√
5/125 + 28638028/25)b10

> 0.

Then by (5.7) and (5.10), we get f1(L) + f2(L) + g2(L) > 0. The proof is
completed. □
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