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ON THE EXISTENCE OF REAL QUADRATIC FIELDS
WITH ODD PERIOD OF MINIMAL TYPE

TAKANOBU EGUCHI AND YASUHIRO KISHI

ABSTRACT. In this paper, under the ABC-conjecture, we show that there
exist infinitely many real quadratic fields with odd period of minimal type.

1. Introduction

In [3], Kawamoto and Tomita defined the notion of real quadratic fields with
period £ of minimal type by using the simple continued fraction expansions of
certain quadratic irrationals (see Definition in Section 2 below). Following that,
they showed that there exist exactly 51 real quadratic fields of class number 1
that are not of minimal type, with one more possible exception ([3, Proposition
4.4]). This is a very interesting result. On the other hand, as for the existence
of real quadratic fields of minimal type, the following have been known:

e Only Q(v/5) is a real quadratic field with period 1 of minimal type
([3, Example 3.4]).
e There are no real quadratic fields with period 2, 3 of minimal type
([3, Example 3.5]).
e There exist infinitely many real quadratic fields with period ¢ of mini-
mal type for any even £ > 4 ([3, Theorem 1.1], [2, Theorems 2, 3]).
Thus, we shall prove the following theorem by considering certain quadratic
irrationals.

Theorem 1. Assume the ABC-conjecture. For each odd integer £ (> 5), there
exist infinitely many real quadratic fields with period ¢ of minimal type.

Throughout this paper, we denote the ring of rational integers by Z and the
field of rational numbers by Q, respectively. For any non-negative integer n,
let F,, and L,, denote the Fibonacci and Lucas numbers, respectively, which
are defined by

Fo=0, F =1, Fn:Fn—l+Fn—2<nZ2)7
Lo :2, L1 = 1, Ln :Ln—l +Ln—2 (’IIZQ)
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2. Real quadratic fields of minimal type

In this section, we recall the definition of real quadratic fields of minimal
type ([3, Theorem 3.1, Definition 3.1]).

Let a1, as,...,a,—1 be a symmetric sequence of £ — 1 (> 1) positive integers.
From this, we define nonnegative integers ¢, and 7, (0 < n < ¢) by

:07 :17 n — Un—-1Q4n— n—2;
(2.1) {QO a1 q Un—1qn—1 + gn—2

ro=1, 11 =0, 7= 1Tn_1+"Tn_2,
inductively. For brevity, we put
(2.2) Ai=q, B:i=qr1, C:=rpq,
and define polynomials g(z), h(z), f(x) by
(2.3) g(z) = Az — (=1)*BC, h(z) = Bx — (—1)°C?, f(z) = g(z)? + 4h(x).
>0,

Furthermore, let sg be the least integer x for which g(x) that is, z >

(—=1)*BC/A. We consider three cases separately:
(I) A=1 (mod 2), (II) (A,C) = (0,0) (mod 2), (III) (4,C) =(0,1) (mod 2).

When Case (I) or Case (II) occurs, we let s be any integer with s > sg, and
put d := f(s)/4 and ag := g(s)/2. Here, we choose an even integer s in Case
(I). Assume that

(24) g(s) > A1y...,Qp—1

holds. Then, d and aq are positive integers, d is non-square, ag = [\/&] and the
simple continued fraction expansion of v/d is

(25) \/&: [a()aala"-aaf—laQaO]

with minimal period ¢. Also, in Case (III), there is no positive integer d such
that (2.5) is the simple continued fraction expansion of v/d.

When Case (I) or Case (III) occurs, we let s be any integer with s > s,
and put d := f(s) and ag := (g(s) + 1)/2. Here, we choose an odd integer s in
Case (I). Assume that (2.4) holds. Then, d and ag are positive integers, d is
non-square, d = 1 (mod 4), ag = [(1++/d)/2] and the simple continued fraction
expansion of (1 ++/d)/2 is

1+d

2
with minimal period ¢. Also, in Case (II), there is no positive integer d such
that d = 1 (mod 4) and (2.6) is the simple continued fraction expansion of
(1+Vd)/2.

Conversely, let d be a non-square positive integer and put wg = V/d or
wq = (1 ++/d)/2. Here we assume d = 1 (mod 4) if wy = (1 + v/d)/2. Then it
is known that the simple continued fraction expansion is of the form

(2.6)

= [ao,al, .. .,ag,1,2(10 — 1]

wq = lag, a1, az, - -, ag,
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where / is the minimal period. Moreover, the sequence a1, as, . ..,as_1 is sym-
metric. From this, we get the quadratic polynomial f(z) and the integer sg
as above. Then d becomes uniquely of the form d = f(s)/4 with some integer
s > sp, and (2.4) holds. If d = 1 (mod 4) in addition, then the same thing is
true for (1++/d)/2.

Definition ([3, Definition 3.1]). Let d be a non-square positive integer. As
we stated above, d is uniquely of the form d = f(s)/4 with some integer
s > sp, where f(x) and sg are obtained as above from the symmetric part
ai,as,...,ap_1 of the simple continued fraction expansion of V/d and ¢ is the
minimal period. If s = s¢, that is, d = f(so)/4 holds, then we say that d is a
positive integer with period £ of minimal type for v/d. When d = 1 (mod 4) in
addition, d is uniquely of the form d = f(s) with some integer s > sg, where
f(x) and sg are obtained as above from the symmetric part a1, as, ..., as—1 of
the simple continued fraction expansion of (1 4+ v/d)/2 and ¢ is the minimal
period. If s = s, that is, d = f(sg) holds, then we say that d is a positive
integer with period £ of minimal type for (14 /d)/2.

Furthermore, for a square-free positive integer d > 1, we say that Q(\/;i) isa
real quadratic field with period ¢ of minimal type, if d is a positive integer with
period ¢ of minimal type for v/d when d = 2,3 (mod 4), and if d is a positive
integer with period ¢ of minimal type for (1 + v/d)/2 when d = 1 (mod 4).

3. Properties of Fibonacci and Lucas numbers

There are many properties of Fibonacci and Lucas numbers (see, for exam-
ple, [5]). We list them which we need in the proof of our theorems.

Lemma 1. For any n,m € Z with n > m > 0, we have

_ a"—p"
(3-2) Fn—an+1 _Fi = (_1)n7
(3.3) Lptm — (=1)"Ly—p, = 5F, Fpp,
(3.4) F2+ F2 | = Fopin,
(3.5) L2 =5F% + (—1)"4
and
(3.6) F, =0 (mod 2) < n =0 (mod 3),

where o = (14++/5)/2, B = (1—+/5) /2. Moreover, if m is even (resp. m is odd),
then we have
Foyi  Foana <7"esp. Fr < Fn—&-l).

(3.7) T < . F. F,
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4. Positive integers with odd period of minimal type

Let L be a positive integer with L > 2 and put £ = 2L 4+ 1. The goal of this
section is to construct positive integers d with period ¢ of minimal type such
that the symmetric part of the simple continued fraction expansion of v/d or
(1+Vd)/2 is

1,...,1,Ffu, Ffu,1,...,1
S—— ——
L—1 L-1
with v € Z, u > 0. From this sequence, we get

@ =F, (0<n<L), quy1=Fu+Fp_q,
Tn="Fo1 (1<n<L), rpi1=FiFr_ju+Fp_o

by using (2.1). Then by [4, Lemma 2.3], the integers A, B, C defined by (2.2)
are given as

A=FSu? +2F}F,_ju+ F? +F?_|,
B = FEFL_1U,2 + FIQI(Fz—l =+ FLFL_Q)U + FL—l(FL + FL_Q),
C=F}F? w4+ 2FF, Fr ou+ F?_ |+ F?_,.

Define the polynomials g(x), h(z) and f(x) as (2.3). Then the integer sy and
the value of f(sp) are given as follows:

Proposition 1. Let the notation be as above.
(1) If L =2, then

so=—u?+u— 1,
f(s0) = u +2u® 4+ 3u® — 2u + 1.
(2) If L > 3, then
so=—FPF}_w?—F}_(3FLFr_o— F}_)u—Fr o(2F, 1 — F1_»),
F(s0) = FR o Fout + 2P 1 F3(F2,, — FuaFy + FRud
+ (8FF  F} — 6Fp 1 Fp + 1)u® — 2(FF,, — 5Fp41Fr + FRu + 5.
Proof. (1) Let L = 2. Then we have
A=u?+2u+2, B=u’+u+1, C=u*+1.
Thus, sq is the least integer x for which
(u? +u+1)(u? +1)

x> —

u2 + 2u + 2
Hence by
(u?2 +u+1)(u?+1) ut +ud +2u +u+1 2 u_9y u+3
_ - _ - W2ay_94 T
u2 + 2u + 2 u2 + 2u + 2 u2 + 2u + 2
and
u+3
<1

<—5—F—>= )
u? 4 2u + 2
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we get so = —u? + u — 1. From this, moreover, we have
g(s0) = Asg + BC = u? +u — 1,
h(so) = Bsg + C? = u?,
and
f(s0) = g(s0)? + 4h(so) = u* + 2u® + 3u* — 2u + 1.
(2) Let L > 3 and put
S:i=—FF} u?—F} ((3FLFp o —F?}_ u—Fp o(2F, 1 — Fp_3).
First, we calculate g(S). By straightforward calculations, we obtain
g(S) = AS + BC = cou® + ciu + co,
where
co=F} —F]F,_1—3FfF}_| + F}F}_| +3F}F}_, + F}F}_,
= FL(F + Fr—1)(Ff — FpFr—1 — F{ )%,
c1=F —FPFp_| —2F}F? | —F}F} | +2F*F} | +3F,F) | +F} |
= (F{ + FpFr1 + F{_)(Ff — FLFL—1 — F{_,)?,
co=F} —2F}F, | — F}F} | +2F F} |+ F}_,
= (F} —FF_1— F7_))*

Here we remove F},_s by substituting Fy_o = Fy, — F,_1. Now it follows from
(3.2) that

(4.1) F? —F Fp, 1 —F; = (FL—F,_1)F, —F}_,
=FL oF, —Ff_; = (-1)*"1,

Thus, we obtain

co=F}(Fp + Fr_1),

co=F} +F F,  +FF |,

co=1,
and hence,
(4.2) g(S)=F}(Fp + Fp_\)u® + (F} + FLFp_1 +F?_ Du+1

> F}(Fp, + Fr_1)u? > F}u.

In particular, we have g(S) > 0. Next, we calculate g(S — 1). Also, straight-
forward calculations give

g(S—1)=A(S —1) + BC = ¢g(S) — A = chu® + cju + ¢},
where
0/2 = Fg(FL + Fr_q — FE)7
G =F}+F FL_1+F}_, —2F;Fp_q,



784 T. EGUCHI AND Y. KISHI

p=1—-F}—F?_|.

Noting that L > 3, we can easily verify that all ¢ are negative. Let us explain
that ¢/ < 0 holds for example. Since L > 3, we have F;, > Fr_; > 1 and
Fr, > 2. Then we have

¢, =F;+F F, 1 +F; | —2FF;
< F} 4+ F}+ F? —2F} = F}(3-2F,) <.
Thus, we have g(S — 1) < 0. Therefore, we get
so=8=—FF} w?—F? [(3FLFL_o—F} \u—Fr_ o(2F,_1 — F1_»).
Hence by Fj_o = F, — F._1, Fr—1 = Fr11 — F, and (4.1), we obtain
9(s0) = F{Friau? + (Fioq — Frpa Fp + FR)u + 1,
h(so) = FiFrs1(Fry1 — Fo)u® + (=F7 iy +3Fp Fr — FR)u+ 1,
and
fs0) = FP o FRut + 2F L FP(F7 oy — Frg Fr + F)u?
+ (8FF 1 F} — 6F 1 F} + 1)u? — 2(F7 y — 5F 1 Fr + F7)u+5.
Proposition 1 is now proved. U

First, we consider the case L = 2. In this case, we have

A =u (mod 2),
C=u+1 (mod 2),
s0 =1 (mod 2),

and hence, Case (III) occurs (resp. Case (I) occurs and sg is odd) if u is even
(resp. u is odd). Moreover, if u > 2, then we have

g(so) =v?+u—1>u=Fju>1.
Next, we consider the case L > 3. By using (3.6), we have
(0,1,1) (mod 2) if L =0 (mod 3),
(Fr,Fr—1,Fr—2) = ¢ (1,0,1) (mod 2) if L =1 (mod 3),
(1,1,0) (mod 2) if L =2 (mod 3).
Then we see that
L =0 (mod 3)
A=1(mod2) <= <or “L=1 (mod 3), u: even”
or “L =2 (mod 3), u: odd”,
(A,C) =(0,0) (mod 2) does not occur,
“L=1 (mod 3), u: odd”

or “L =2 (mod 3), u: even”

(A,C)=(0,1) (mod 2) < {
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and

)0 (mod 2) if “L =0 (mod 3), u: odd” or “L =2 (mod 3), u : odd”,
So =
0 1 (mod 2) if “L =0 (mod 3), u: even” or “L =1 (mod 3), u : even”.

The following table summarizes the above:

L =0 (mod 3) L =1 (mod 3) L =2 (mod 3)
u: even | Case (I), so : odd | Case (I), so : odd Case (III)
u: odd | Case (I), so : even Case (III) Case (I), sg : even

Moreover, by (4.2), we have
g(s0) > Fu > 1.
Thus, it follows from what has been stated in Section 2 that the following holds:

Theorem 2. (1) For a positive integer u, put d := u* +2u® + 3u? —2u+ 1. If
u > 2, then d is a positive integer with period 5 of minimal type for (1++/d)/2
and the continued fraction expansion of (14 /d)/2 is of the form

(1 + \/E)/Q = [a’ov 1,U, u, 17 2@0 - 1]7

where ag = (u? + u)/2.
(2) Let L > 3. For a positive integer u, put

d:=F}  FPu* + 2Fp 1 FP(F}, — Fri1 Fr + Fu®
+ (8FF 1 F} — 6F 1 Ff + 1)u? — 2(F7 .y — 5Fp 1 Fr + F7)u+5.
If either u = 0 (mod 2) or “u =1 (mod 2) and L = 1 (mod 3)7, then d is

a positive integer with period 2L + 1 of minimal type for (1 4+ /d)/2 and the
continued fraction expansion of (1 ++/d)/2 is of the form

1+Vd)/2=]ag,1,...,1, F?u, F?u,1,...,1,2a9 — 1],
LWty
—— ———

L-1 L-1

where ag = {FF41u® + (Fz+1 — Fr1F, + FR)u + 2}/2. Similarly, for a
positive integer u, put

d:={F} Fiu* +2F . F}(F?,, — Fry1 Fr + F7)u?
+ (8FL 41 FL — 6Fp 1 Ff + 1)u® = 2(FZ ) — 5Fp 1 Fr + Ff)Ju + 5} /4.
Ifu=1 (mod 2) and L = 0,2 (mod 3), then d is a positive integer with period

2L + 1 of minimal type for \/d and the continued fraction expansion of Vd is
of the form

Vd = [ag, 1,..., 1, F2u, Fu, 1,...,1,2a),
—— ——
L—1 L—1
where ag = {Fy Fry1u® + (F7,, — FLo FL + FR)u+1}/2.
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5. Proof of the main theorem

In this section, we shall give a proof of Theorem 1. This is obtained as a
consequence of a theorem of Granville.

ABC-conjecture. Let a,b,c be coprime positive integers satisfying a +b = c.
Then for any € > 0, there exists a positive constant C. such that

¢ < C.N(a,b,c)'*e,
where N (a,b,c) is the product of the distinct primes dividing abe.

Theorem 3 ([1, Theorem 1]). Suppose that p(X) € Z[X], without any repeated
roots. Let k be the largest integer which divides ¢(n) for all integers n, and
select k' to be the smallest divisor of k for which k/K' is square-free. If the
ABC-conjecture is true, then there are ~ c,N positive integers n < N for
which ¢(n)/k" is square-free, where c, is a certain positive constant.

5.1. The case £ = 5

From Theorem 2(1), it is sufficient to show that there are infinitely many
integers u (> 2) for which u? + 2u? + 3u? — 2u + 1 is square-free. To prove this,
let us apply Theorem 3 to

O(X) = X* +2X3 +3X% - 2X +1.

Since the discriminant of ¢(X) is 4352, ¢(X) does not have repeated roots.
Since ¢(0) = 1, it holds k = 1. Thus, we can take k' = 1 and hence, there are
infinitely many positive integers n for which ¢(n) is square-free, as desired.

5.2. The case £ > 7
Let L > 3. Tt follows from Theorem 2(2) that for a positive integer v/,
d:=F7 FP(2u')' + 2F i FR(FL 4y — FroFo + F7)(2u')?
+ (BFF 1 FE — 6Fp 1 F} +1)(2u)?
—2(Ff, —5Fp 1 Fr + F7)(2u) +5
is a positive integer with period £ = 2L + 1 of minimal type for (1 4 v/d)/2.
Thus, as in Subsection 5.1, let us apply Theorem 3 to
p(X) = 2'FF  FE X' 4+ 2 Fp ( FR(F7 4y — FraFr + F7)X?
+2%(8F} .\ F} — 6F 1 F} +1)X?
— 2%(F} = 5FL Fr + F7)X +5.
Now we put a := Fr41, b := Fp, for brevity. Then the discriminant disc(p) of
o(X) is
disc(p) = 2'5a%°{16b%a'3 — 224b*a'? + 336b°a'! 4 (15200° 4 1662)a'”
+ (—1696b" — 3126%)a® + (—4672b% + 800b" + 1)a®
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1872b% + 13606° — 12b)a” + (686460 — 27686° — 94b%)a®
13120 — 2984b" + 5920%)a®

—3456b'2 4 2208b% + 75b* — 6)a*

—2160b' + 270467 — 1040b° + 20b)a®

—336b'" + 4006'° — 1740° 4 118b%)a?

n
4
n
4
n
+ (165" — 1206 + 1966 — 1006%)a + (b® — 6b* + 5)}.

(
(
(
(
(
(

We have disc(yp) > 0, which will be proved in the next subsection. Therefore,
©(X) does not have repeated roots. Moreover, we have ©(2) £ 0 (mod 5) for
any L. Indeed, this follows from the following table:

L (mod 20) 0 1 2 3 4 5 6
(Fr, Fr41) (mod 5) | (0,1) | (1, 1) | (1,2) | (2,3) | (3,0) | (0,3) | (3,3)
©(2) (mod 5) 3 1 3 1 4 4 2

L (mod 20) 7 8 9 | 10 | 1L | 12 | 13
(Fr, Fry1) (mod 5) | (3,1) | (1,4) | (4,0) | (0,4) | (4,4) | (4,3) | (3,2)
©(2) (mod 5) 2 1 3 3 1 3 1

L (mod 20) 14 | 15 | 16 | 17 | 18 | 19
(FLvFLJrl) (mOd 5) (250) (072) (272) (274) (4a 1) (170)
£(2) (mod 5) 4 4 2 2 1 3

From this, together with ©(0) = 5, it also holds k = 1, and hence, we can
take x' = 1. Thus, there are infinitely many positive integers u' for which
d = p(u') is square-free, as desired. The proof of Theorem 1 is complete
provided disc(p) > 0 for any L (> 3).

5.3. The positivity of the discriminant
The goal of this section is to prove the following:

Proposition 2. Under the notations of Subsection 5.2, we have disc(p) > 0
for any L (> 3).

Proof. Put D(L) := disc(yp)/(2*a2b°). In case of 3 < L < 7, we can verify
D(3) = 26920512 > 0,
D(4) = 8102250000 > 0,
D(5) = 2684459417600 > 0,
D(6) = 855360599155712 > 0,

D(7) = 276546455581228560 > 0

by straightforward calculations.
In the following, we consider the case L > 8. Now let us split D(L) into five
polynomials:

D(L) = fi(L) + f2(L) + g1(L) 4 g2(L) + h(L),
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where

fi(L) = 16b%a® + 336b°a' — 169607 a” + 18720%a" + 13120 a®
— 2160b*2a® + 16b*°a,

f2(L) = —224b*a'? + 15200%a'° — 46720%a® + 6864b'a® — 3456b'%a*
— 336bMa?,

g1(L) = 166%a'® 4+ 800b%a® — 2768b%aS + 2208b%a* + 4000'%a?,

g2(L) = —312b%a° + 1360b°a” — 2984b7a® + 2704b%a> — 1200 a,

h(L) = a® — 12ba™ — 94b%a® + 592b%a® + 75b*a* — 10406°a® — 1746°a*
+196b7a + b® — 6a* + 20ba® + 118b%a® — 100b%a — 6b* + 5.

Since L > 8, it follows from (3.7) that

g — & < g < @ — %’
13 F; b~ Fy 21
and hence,
21 34
.1 —b < —b.
(5-1) TERDT]

Therefore, we obtain

21 \ " 21 \*® 34 \° 21 \*
L) > 1662 =b bt =b] — 27685 [ =—b 2208b% [ =b
g1(L) > 16 (13) + 800 <13> 768 (21) + 2208 3

2
21
400010 [ =p

_ 62090306674135877152096 , 15

11823588092798847729
>0,

21 \*® 34 \7 34 \° 21 \°
L Zb) —12b( =b) —94b [ — 20 | =
h(L) > (1319) b(21b) 94b (211)) + 592b (13b)
+ 75b* Eb 4—10401;5 %b 3—174b6 %b 2+196b7 gb
13 21 21 13

4 3 2
34 21 21 34
¥ —6(=b 20b ( —=b 1180 ( =b) —1000° [ =b
" 6<21>+o<13)+8(13) 00 (21>

—6b*+5
231902351941769392279 5 = 26076650980 iy
T 489734418044922687 142424919

> 0.
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From now on, we shall prove f1(L)+ fa(L)+g2(L) > 0. By takingn = L+1

and m = L in (3.3), we have

(5.2) 5ab = 5Fp 1 Fp, = Lopv1 — (—1)"Ly = Lopyq — (—1)%.
Moreover, by taking n = L in (3.4), we have

(5.3) >+ =For 1.

Furthermore, by taking n = 2L 4 1 in (3.5), we have

(5.4) L§L+1 = 5F22L+1 + (_1)2L+14 = 5F22L+1 —4.

Here, it follows from (5.3) that

1\* 2vBFypy 1
(5F3141 —4) — (\/5F2L+1 - 172) = TJF T 4
2v/5(a? + b2)b? — 1 — 4b*
(2v/5 — 4)b* + (2v/5a%b% — 1)
> 0.
From this, together with (5.4), we have
1
(5.5) Lor1 > V5Fy 41 — =k
Hence by (5.2), (5.3), (5.5), we get
1 1 1
(5.6) ab= (L2r+1 — (-1 > 3(\/5F2L+1 — - (=Dh)
1 2,12 1 L
= L@ +8) — g~ (1)),

By putting
t(L) = (f1(L) + g2(L))/(ab),
it holds from (5.1) and b > 2 that

t(L) = 16b%a'? + 336b*a'® — 16960°a® 4 18720%a° + 13120'%a* — 21606202

+ 166 — 312b%a® + 1360b%a’® — 2984b%a* + 2704b%a% — 12060

21 12 21 10
1662 [ =b bt =
6 (13 ) + 336 (13 ) 21
4 2
21 34 34
1312p10 [ 22 _921 12 [ 9F 16014 — 31902 [ 22
+ 13120 (1319) 2160b 21b +16b 312 21b

6 4 2
+ 1360b* (Eb) — 20848 (ﬁb) + 27045° G;)b) — 12051

\Y

8

881200196968205322394641 60854572656469683

1920935609759164060943190560, ,,  251541467016412596680,

4 \® 21 \°
— 1696b° <3b> + 1872p% <13b>
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> 21796 — 41347
> 0.
Then by (5.6), we obtain

(5.7)  fi(L) + fa(L) + g2(L) = fo(L) + abt(L)

1 1
> L) + (VA6 + 1) — 5 — (~)R(D)
Now we consider the value of a®> — a?b? by using (3.1). Noting aff = —1,
1+a?=(5++5)/2 and o? — B = /5, we have

2 2
oo = (Y (220
V5 NG
_2(_1)L+1 + 52L+2 4 2(—1)La2 _ a252L

b)
= (t2 ) - E ot - )

B L2 5+\/5 BQL
R A

1 1
— ot (14 ) L
0 (1+ 75) - Vo
Therefore, by putting e := 1/(v/5a?L) > 0, it holds that
1
a> =’ + (-1 4+ —=) —e.
(=1)%( \/5)

By substituting this into the right hand side of (5.7) and arranging the terms
in descending powers of b, we get

1 1
Ja(L) + 5(\/5(02 +b%) — =i (-1)5)H(L)
= —224b%a'? + 15200500 — 46726%a® + 686461008 — 3456b'2a* — 336b'4a>

+ %(\/5(@2 + %) — le — (-1)E)(16b%a'? + 3366*al® — 1696b°a®
4 1872b%a% 4 1312b"%a* — 21600'%a” 4 16b** — 312b%a® + 1360b%a®
— 2984b5a* 4 2704b%a* — 1206'°)
= 0" + bt bt 4 S+ b’ 4 bt + b 4
where
¢y = (—160V5 — 160)e,
(1672V/5 + 3800)e? + (—1)%(—4288v/5 — 9792)e + (1248/5 + 2656),

1
C12
—2168v/5 — 5704)e® + (—1)% (46128 /5v/5 + 21616)e>

011/0 = (
+ (—9024v/5 — 98944/5)e + (—1)F(576/5 + 4032/5),



REAL QUADRATIC FIELDS WITH ODD PERIOD OF MINIMAL TYPE

4 = (7296V/5/5 + 1728)e* + (—1)F(—33168v/5/5 — 57408/5)¢>
+ (217588v/5/25 + 84548 /5)e?
+ (=1)L(~16144v/5/25 — 11696/25)e
+ (—81056v/5/25 — 188544/25),
¢y = (376V/5/5 — 1064)e® + (—1)%(448V/5 + 23056 /5)e*
+ (=7264/5/25 — 25608/5)e®
+ (—1)E(—114696/5/25 — 175984/25)¢?
+ (1050656+/5/125 + 441536/25)e
+ (=)L (—505808v/5/125 — 223088/25),
¢ = (104v/5 — 168)e8 + (—1)F(—2064+/5/5 + 480)e®
+ (1108v/5/5 — 7724/5)e’
+ (—=1)E(52016v/5/25 + 32032/5)e?
(—134064v/5/25 — 315704/25)e>
(1) (609584v/5/125 + 271216 /25)e
(—186576v/5/125 — 81968/25),
16v5/5)e” + (—1)%(112v/5/5 4 96/5)e8 + (—24V/5/5 — 96/5)e®
(—1)F(—296V/5 — 2384/5)e + (21584+/5/25 + 9024/5)¢?
(—1)1(—25296v/5/25 — 292944/125)¢?
(286944+/5/625 + 139808,/125)e
(=1)E(=16064v/5/625 — 9792/125),
16/5)e® 4+ (=1)*(96v/5/25 + 96/5)e> + (—96v/5/5 + 24/5)e*

n
+
+
= (=
+
+
n
+
= (=
+ (—1)"(—224V/5/25 — 736/5)e® + (2592v/5/25 + 8544/25) e

+ (1) (—82944v/5/625 — 8448 /25)e + (333441/5,/625 + 78144/625).

We remark that by L > 8 and [v/5a!6] = 4935, we have

1 1 1
Vba2L < V5al16 < 1935

(i) Suppose that L is even. Then by (5.8), we have

(58) 0<e=

¢y = (16725 + 3800)e? + (—4288v/5 — 9792)e + (1248+/5 + 2656)
> 0+ (—4) + (1248v/5 + 2656)
= 1248V/5 + 2652,
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Ay = (—2168v/5 — 5704)e> + (46128/5V/5 + 21616)e>
+ (—9024v/5 — 98944/5)e + (57615 + 4032/5)

> (=1) + 0+ (=9) + (5765 + 4032/5)
>0,
i = (7296V/5/5 + 1728)e* + (—33168v/5/5 — 57408/5)e>
+ (217588v/5/25 + 84548 /5)e? + (—16144v/5/25 — 11696/25)e
+ (—81056v/5/25 — 188544/25)
>0+ (1) + 04 (=1) + (—81056+/5/25 — 188544/25)
= —81056v/5/25 — 188594/25,
) = (376v/5/5 — 1064)e” + (448V/5 + 23056/5)e*
+ (—7264v/5/25 — 25608/5)e® + (—114696v/5/25 — 175984 /25)¢?
+ (1050656+/5/125 + 441536/25)e + (—505808v/5/125 — 223088 /25)
> (=1) + 0+ (—1) 4+ (=1) + 0 + (—505808V/5/125 — 223088 /25)
= —505808+/5/125 — 223163/25,
) = (1045 — 168)e8 + (—2064V/5/5 4 480)e® + (1108V/5/5 — 7724/5)e*
+ (52016v/5/25 + 32032/5)e3 + (—134064V/5/25 — 315704/25)¢>
+ (6095841/5/125 + 271216 /25)e + (—1865761/5/125 — 81968/25)
>0+ (1) + (=1) + 0+ (—1) + 0+ (—186576v/5/125 — 81968/25)
= —1865761/5/125 — 82043 /25,
y = (—16V/5/5)e” 4 (112v/5/5 4 96/5)e’ + (—24v/5/5 — 96/5)e”
+ (—296V/5 — 2384/5)e” + (21584v/5/25 + 9024/5)e?
+ (—25296V/5/25 — 292944/125)e? + (2869441/5/625 + 139808/125)e
+ (—16064v/5/625 — 9792/125)
> (=1) 40+ (1) 4 (=1) + 0+ (=1) 4+ 0 + (—16064+/5/625 — 9792/125)
= —16064/5/625 — 10292/125,
) = (—16/5)e® + (96v/5/25 + 96/5)e” + (—96v/5/5 + 24/5)e*
+ (—224v/5/25 — 736/5)e> + (2592v/5/25 + 8544/25)¢>
+ (—82944+/5 /625 — 8448/25)e + (33344+/5/625 + 78144/625)

> (1) + 04 (=1) + (1) + 0+ (—1) + (33344V/5/625 + 78144/625)
> 0.
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Since g% > 0 by 2 | L, moreover, we have

gL (aL—ﬂL)Z ! (M)Q_ 1
Vba2l \ V5 Vba2l \ /5 5V5
Therefore, by noting b > 21, we obtain

1 1
(5.9) faoL) + g(\/é(cﬁ +b%) — 7z — L)
> (—160V/5 — 160)eb™ + (1248+/5 + 2652)b'?
+ (—81056V/5/25 — 188594/25)b° + (—505808v/5/125 — 223163 /25)b°

+ (—1865761/5/125 — 82043/25)b* 4 (—16064v/5/625 — 10292/125)b?

1
> (—160v/5 — 160)b'? - sAT (1248/5 + 2652)b'?

+ (—81056v/5/25 — 188594/25)b% 4 (—505808V/5/125 — 223163 /25)b°

+ (—1865761/5/125 — 82043 /25)b* 4 (—16064v/5/625 — 10292/125)b*
= (6208V/5/5 + 2620)b*2

+ (—81056+/5/25 — 188594/25)b° 4 (—505808V/5/125 — 223163 /25)b°

+ (—1865761/5/125 — 82043 /25)b* 4 (—16064v/5/625 — 10292/125)b*
> (6208V/5/5 + 2620)b° - 21*

+ (—81056+/5/25 — 188594 /25)b° 4 (—505808V/5/125 — 223163 /25)b°

+ (—186576v/5/125 — 82043/25)b° + (—16064V/5/625 — 10292/125)b°

= (150911751616+/5,/625 + 63690048208 ,/125)b°
> 0.

Then by (5.7) and (5.9), we get f1(L) + fo(L) + g2(L) > 0.
(ii) Suppose that L is odd. Then again by (5.8), we have

ly = (1672V/5 + 3800)e? 4 (4288V/5 + 9792)e + (1248V/5 4 2656)
> 0+ 0+ (1248V/5 + 2656)
= 1248V/5 + 2656,
o = (—2168V5 — 5704)e® 4 (—46128/5V/5 — 21616)e?
+ (=9024V/5 — 98944 /5)e + (—5767/5 — 4032/5)
> (=1) + (1) + (—9) + (=576v/5 — 4032/5)
= —576v/5 — 4087/5,
f = (7296/5/5 4 1728)e* + (33168v/5/5 + 57408/5) e’
+ (217588v/5/25 + 84548 /5)e? + (16144v/5/25 + 11696/25)e
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+ (—81056v/5/25 — 188544/25)
> 04040+ 0+ (—81056v/5/25 — 188544/25)
> —81056v/5/25 — 188544/25,
i = (376v/5/5 — 1064)e” + (—448V/5 — 23056 /5)e*
+ (—7264v/5/25 — 25608/5)e® + (114696V/5/25 + 175984/25)¢>
+ (1050656+/5/125 + 441536,/25)e + (505808v/5,/125 + 223088 /25)
> (=1) 4+ (—=1) + (—1) + 0+ 0 + (505808v/5/125 + 223088 /25)
> 0,
¢} = (104v/5 — 168)e® + (2064v/5/5 — 480)e® + (1108v/5/5 — 7724/5)e*
+ (=52016V/5/25 — 32032/5)e® 4 (—134064+/5/25 — 315704/25)e>
+ (—609584v/5/125 — 271216/25)e 4 (—186576v/5/125 — 81968/25)
> (=1) 4+ 0+ (=1) + (=1) + (=1) + (=5) + (—186576/5/125 — 81968/25)
> —186576v/5/125 — 82193/25,
¢ = (—16V/5/5)e” + (=112v/5/5 — 96/5)e® + (—24V/5/5 — 96/5)e”
+ (296V/5 + 2384/5)e* 4 (21584+/5/25 + 9024 /5)e>
+ (252961/5/25 + 292944/125)e? + (286944V/5/625 + 139808/125)e
+ (16064v/5,/625 + 9792/125)
> (=1) 4+ (=1) + (=1) + 0+ 0 + 0+ 0 + (16064v/5/625 + 9792/125)
>0,
) = (—16/5)e® + (—96v/5,/25 — 96/5)e® + (—96v/5/5 4 24/5)e*
+ (224V/5/25 + 736/5)e® + (2592v/5/25 + 8544/25)?
+ (829441/5/625 + 8448 /25)e + (333441/5/625 + 78144/625)
> (=1) 4+ (=1) + (1) + 0+ 0 + 0 + (33344V/5/625 + 78144/625)
> 0.

Since 21 L and 2 + 8% < 5, moreover, it holds that

eh? — 1 <QL5L>2
VBa2L V5
1 o? (-1l 42t
= VB2l 5
1 24 2L 1 1 1

= + < + = + e,
5vV5  5v5a2l  5v5  /Ba?l 55
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and hence,
eb4<(1—|—e>b2 —+eb2<—+—+e
5v5 5V5 5v5  5V5
- b? N 1 N 1 - b? N 1
5V5  5v5 4935 " 5./5

Therefore, again by b > 21, we obtain

(510) fo(L) + 5 (VB(@? + ) — 25 + (D)

> (—160v/5 — 160)eb™ +(1248V/5 + 2656)b2 + (—5761/5 — 4087/5)b'°

+ (—810561/5/25 — 188544/25)b +(—1865761/5/125 — 82193 /25)b*

> (—160vV/5 — 160)b'° - (fer 10) +(1248v/5 + 2656)b"2

+ (—=576v/5 — 4087/5)b'° + (—81056+/5/25 — 188544/25)b°
+ (—1865761/5/125 — 82193 /25)b*
= (6208V/5/5 + 2624)b'2 + (—592V/5 — 4167/5)b'°

+ (—81056+/5/25 — 188544/25)b°+ (—1865761/5/125 — 82093 /25)b*

> (6208v/5/5 + 2624)b'° - 2124 (—592v/5—4167/5)b'°

+ (—81056+/5/25 — 188544/25)b'0+ (—186576+/5,/125—82093/25)b'°

= (67777344V/5/125 + 28638028,/25)b'°
> 0.

Then by (5.7) and (5.10), we get fi1(L) + f2(L) 4+ g2(L) > 0. The proof is

completed.
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