• Title/Summary/Keyword: Real grid

Search Result 711, Processing Time 0.037 seconds

Determination of Weighting Factor in the Inverse Model for Estimating Surface Velocity from AVHRR/SST Data (AVHRR/SST로 부터 표층유속을 추정하기 위한 역행렬 모델에서 가중치의 설정)

  • Lee, Tae-Shin;Chung, Jong-Yul;Kang, Hyoun-Woo
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.543-549
    • /
    • 1995
  • The inverse method has been used to estimate a surface velocity field from sequential AVHRR/SST data. In the model, equation system was composed of heat equation and horizontal divergence minimization and the velocity field contained in the advective term of the heat equation, which was linearized in grid system, was estimated. A constraint was the minimization of horizontal divergence with weighting factor and introduced to compensate the null space(Menke, 1984) of the velocity solutions for the heat equation. The experiments were carried out to set up the range of weighting factor and the matrix equation was solved by SVD(Singular Value Decomposion). In the experiment, the scales of horizontal temperature gradient and divergence of synthetic velocity field were approximated to those of real field. The neglected diffusive effect and the horizontal variation of heat flux in the heat equation were regarded as random temperature errors. According to the result of experiments, the minimum of relative error was more desirable than the minimum of misfit as the criteria of setting up the weighting factor and the error of estimated velocity field became small when the weighting factor was order of $10^{-1}$

  • PDF

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems (CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.164-175
    • /
    • 2009
  • CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Heat load characteristic analysis of conduction cooled 10kJ HTS SMES (전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석)

  • Kim, Kwang-Min;Kim, A-Rong;Kim, Jin-Geun;Park, Hae-Yong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

Introduction of KEPCO's distribution class SFCL fabricated for verification test (실증시험용 배전급 초전도 한류기의 특성 평가 및 운전 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seung-Duck;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Sim, Jung-Wook;Lee, Kyoung-Ho;Oh, Ill-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.294_295
    • /
    • 2009
  • Superconducting fault current limiter (SFCL) is an power device of a novel concept. While SFCLs generate no ohmic loss during the operation carrying normal currents, they can limit fault currents very fast making large impedance by their quench characteristics. In 2006, KEPCO has developed a distribution class hybrid type SFCL by a collaborative research project with LS industrial systems. The SFCL has merits in practical and economical points of view. In the SFCL, the superconductor just plays a role of a fault detector and the current limiting is completed by the other current limiting element made of normal metals throu호 the line commutation. As a result, the required amounts of superconductors can be reduced considerably. Consequently, the hybrid SFCL can be fabricated with small size and cost, maintaining perfect current limiting performance. Currently, KEPCO is carrying out a research project at Gochang power test center for the purpose of the verification test of the 22.9 kV/ 630 A class SFCL for the practical application in real grid. Through the project, a long term operational test and fault current test will be done. In this paper, the back ground of development and installation of the SFCL will be explained and the operation plan of the SFCL for the verification test is also introduced.

  • PDF

Development of Sensor System for Indoor Location-Based Service Implementation (실내 위치기반 서비스 구현을 위한 센서 시스템 개발)

  • Cha, Joo-Heon;Lee, Kyung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1433-1439
    • /
    • 2012
  • This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by $360^{\circ}$ and yawed up-and-down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart-home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

A Smart Set-Pruning Trie for Packet Classification (패킷 분류를 위한 스마트 셋-프루닝 트라이)

  • Min, Seh-Won;Lee, Na-Ra;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1285-1296
    • /
    • 2011
  • Packet classification is one of the basic and important functions of the Internet routers, and it became more important along with new emerging application programs requiring real-time transmission. Since packet classification should be accomplished in line-speed on each incoming input packet for multiple header fields, it becomes one of the challenges in designing Internet routers. Various packet classification algorithms have been proposed to provide the high-speed packet classification. Hierarchical approach achieves effective packet classification performance by significantly narrowing down the search space whenever a field lookup is completed. However, hierarchical approach involves back-tracking problem. In order to solve the problem, set-pruning trie and grid-of-trie algorithms are proposed. However, the algorithm either causes excessive node duplication or heavy pre-computation. In this paper, we propose a smart set-pruning trie which reduces the number of node duplication in the set-pruning trie by the simple merging of the lower-level tries. Simulation result shows that the proposed trie has the reduced number of copied nodes by 2-8% compared with the set-pruning trie.

A Surface Modeling Algorithm by Combination of Internal Vertexes in Spatial Grids for Virtual Conceptual Sketch (공간격자의 내부정점 조합에 의한 가상 개념 스케치용 곡면 모델링 알고리즘)

  • Nam, Sang-Hoon;Kim, Hark-Soo;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.217-225
    • /
    • 2009
  • In case of sketching a conceptual model in 3D space, it's not easy for designer to recognize the depth cue accurately and to draw a model correctly in short time. In this paper, multi-strokes based sketch is adopted not only to reduce the error of input point but to substantiate the shape o) the conceptual design effectively. The designer can see the drawing result immediately after stroking some curves. The shape can also be modified by stroking curves repeatedly and be confirmed the modified shape in real time. However, the multi-strokes based sketch needs to manage the great amount of input data. Therefore, the drawing space is divided into the limited spatial cubical grids and the movable infernal vertex in each spatial grid is implemented and used to define the surface by the multi-strokes. We implemented the spatial sketching system which allows the concept designer's intention to 3D model data efficiently.

The Study of Optimized Combustion Tuning for Fossil Power Plant (발전보일러의 최적연소조정에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.102-108
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for NOx controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2$, NOx and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective back-pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing NOx emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

  • PDF