• 제목/요약/키워드: Real grid

검색결과 710건 처리시간 0.024초

22.9 kV 초전도케이블 시스템의 Thermal Cycle Test 영향 (Influence of Thermal Cycle Test of a 22.9 kV High Temperature Superconducting Cable System)

  • 손송호;임지현;양형석;류희석;최하옥;성태현;김동락;황시돌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.242-242
    • /
    • 2007
  • To verify the applicability of High Temperature Superconducting (HTS) cable system into the real grid, the HTS cable system with the specification of 22.9 kV, 1250 A, 100 m long was installed in the second quarter of 2006, and the long term field test has been in progress at the KEPCO's Gochang power testing yard. Apart from the conventional power cable, HTS cable system requires sufficient thermo-mechanical strength to endure a large temperature difference. To date, the KEPCO HTS cable system was cooled down and warmed to the room temperature several times to investigate the influence of thermal cycles experimentally. Dielectric properties, critical current dependance and heat losses were evaluated at each step of thermal cycle. The test results showed that thermal cycle did not induce the degradation of dielectric properties, and the critical current decreased to 5 % of the initial value.

  • PDF

Modified droop control scheme for load sharing amongst inverters in a micro grid

  • Patel, Urvi N.;Gondalia, Dipakkumar;Patel, Hiren H.
    • Advances in Energy Research
    • /
    • 제3권2호
    • /
    • pp.81-95
    • /
    • 2015
  • Microgrid, which can be considered as an integration of various dispersed resources (DRs), is characterized by number of DRs interfaced through the power electronics converters. The microgrid comprising these DRs is often operated in an islanded mode. To minimize the cost, reduce complexity and increase reliability, it is preferred to avoid any communication channel between them. Consequently, the droop control method is traditionally adopted to distribute active and reactive power among the DRs operating in parallel. However, the accuracy of distribution of active and reactive power among the DRs controlled by the conventional droop control approach is highly dependent on the value of line impedance, R/X i.e., resistance to reactance ratio of the line, voltage setting of inverters etc. The limitations of the conventional droop control approach are demonstrated and a modified droop control approach to reduce the effect of impedance mis-match and improve the time response is proposed. The error in reactive power sharing is minimized by inserting virtual impedance in line with the inverters to remove the mis-match in impedance. The improved time response is achieved by modifying the real-power frequency droop using arctan function. Simulations results are presented to validate the effectiveness of the control approach.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

무선 센서 네트워크에서의 정확도와 효율성을 고려한 기술 지원 방안 (Considering the accuracy and efficiency of the wireless sensor network Support Plan)

  • 유상현;최재현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.96-98
    • /
    • 2014
  • 무선 센서 네트워크(WSN)는 컴퓨팅 능력과 무선 통신 능력을 갖추고 있는 센서 노드로부터 획득한 정보를 무선으로 실시간 수집하며, 처리, 활용하는 기술로서 현재 그 응용 분야는 환경 모니터링, 헬스 케어, 보안, 스마트 홈, 스마트 그리드 등 매우 다양하다. 하지만 무선 센서 네트워크는 저가의 센서 노드를 구성하기 위해 저전력과 저용량이라는 제약조건을 갖고 있다. 그러므로 무선 센서 네트워크에서는 제한된 에너지와 용량을 효율적으로 사용하는 알고리즘이 요구된다. 본 논문에서는 노드간의 연결 상태와 남아있는 에너지의 양을 비교함으로써 하이브리드 형식의 클러스터 헤드 노드를 선정하고 클러스터링하는 알고리즘을 제안함으로서 무선 센서 네트워크의 효율성과 정확성 증대를 목표로 한다.

  • PDF

태양전지를 이용한 지속 가능형 LTE 기반 IoT 미세먼지 측정 단말기 개발 (Development of the sustainable solar cell powered LTE based IoT fine dust detecting terminal)

  • 김호운;우동식
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.109-115
    • /
    • 2021
  • 본 논문에서는 환경문제로 높은 관심을 받고 있는 미세먼지를 측정하여 실시간으로 데이터를 전송하는 측정 단말기를 개발하였다. 단말기는 설치가 쉽도록 외부와의 데이터 연결은 전국에 퍼져 있는 LTE 망을 사용하도록 하였고 전원은 태양전지와 충전지를 사용하여 유선 전력망에 연결될 필요없이 지속 가능한 독립적인 형태로 개발하였다. 단말기를 통해 수집된 데이터는 공공 기관에서 제공하는 기상 데이터와 조합하여 미세먼지의 추세를 예측을 할 수 있음을 보였다. 개발된 단말기는 임의의 지역에서 간단한 설치 작업만으로 미세 먼지 측정 데이터를 얻을 수 있어 향후 미세먼지의 보다 정확한 흐름과 영향을 분석하는데 도움이 될 것으로 예상된다.

동적 및 정적 물체 회피를 위한 정밀 도로지도 기반 지역 경로 계획 (High-Definition Map-based Local Path Planning for Dynamic and Static Obstacle Avoidance)

  • 정의곤;송원호;명현
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.112-121
    • /
    • 2021
  • Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Quadrilateral Irregular Network for Mesh-Based Interpolation

  • Tae Beom Kim;Chihyung Lee
    • 지질공학
    • /
    • 제33권3호
    • /
    • pp.439-459
    • /
    • 2023
  • Numerical analysis has been adopted in nearly all modern scientific and engineering fields due to the rapid and ongoing evolution of computational technology, with the number of grid or mesh points in a given data field also increasing. Some values must be extracted from large data fields to evaluate and supplement numerical analysis results and observational data, thereby highlighting the need for a fast and effective interpolation approach. The quadrilateral irregular network (QIN) proposed in this study is a fast and reliable interpolation method that is capable of sufficiently satisfying these demands. A comparative sensitivity analysis is first performed using known test functions to assess the accuracy and computational requirements of QIN relative to conventional interpolation methods. These same interpolation methods are then employed to produce simple numerical model results for a real-world comparison. Unlike conventional interpolation methods, QIN can obtain reliable results with a guaranteed degree of accuracy since there is no need to determine the optimal parameter values. Furthermore, QIN is a computationally efficient method compared with conventional interpolation methods that require the entire data space to be evaluated during interpolation, even if only a subset of the data space requires interpolation.

Method of Ga removal from a specimen on a microelectromechanical system-based chip for in-situ transmission electron microscopy

  • Yena Kwon;Byeong-Seon An;Yeon-Ju Shin;Cheol-Woong Yang
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.