• Title/Summary/Keyword: Real earthquake

Search Result 411, Processing Time 0.022 seconds

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

Development of Dam Earthquake Monioring System and Application of Earthquake Records for Dam Safety Management against Earthquake (지진대비 댐안전관리를 위한 지진감시시스템 구축 및 계측기록 활용)

  • Ha, Ik-Soo;Lee, Jong-Wook;Cho, Sung-Eun;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1389-1396
    • /
    • 2008
  • The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.

  • PDF

An Experimental Study on the Liquefaction Resistance Strength Using Real Earthquake Loadings Considering Seismic Magnitude in Moderate Earthquake Region (실지진하중을 이용한 중진지역에서의 액상화 저항강도에 관한 실험적 연구)

  • 김수일;최재순;박성용;박근보;심재욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.569-576
    • /
    • 2003
  • Based on the equivalent uniform stress concept Presented by Seed and Idriss, sinusoidal cyclic loads which simplified earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. The liquefaction assessment method which was invented by using the equivalent uniform stress concept is suitable for the severe earthquake region such as Japan or USA, so the proper method to Korea is needed. In this study, estimation of the resistance to liquefaction was conducted by applying real earthquake loading to the cyclic triaxial test. From the test results, the characteristics of the fine sand under moderate earthquake were analyzed and compared with the results under strong earthquakes. Typically real earthquake loads used in this study are divided into two types - impact type and vibration type. Furthermore, results of the liquefaction resistance strength based on the equivalent uniform stress concept and tile concept using real earthquake loading were compared.

  • PDF

Preliminary study on the Earthquake Alert System (지진네트워크를 이용한 지진경보시스템 예비연구)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.213-217
    • /
    • 2000
  • It is essential to establish an earthquake alert system real-time seismographic data acquisition and data transmission by dedicated communications,. Up to now approximately 60 earthquake stations are installed in Korea and being operated by KMA. KEPRI,. KINS and KIGAM and its number will be increased in time. The earthquake data recorded in half of these stations are transmitted to data center and analysed in quasi real-time. Therefore if these real-time seismographic stations be connected to each organization by dedicated lines and we will develop an algorithm which we can calculate the magnitude and epicenter within 25-30 seconds after an earthquake occurred it will be possible to develop an Earthquake Alert System giving several tens of seconds warning in advance.

  • PDF

Real-time Estimation of the Earthquake Magnitude Using the Bracketed Cumulative and Peak Parameters of the Ground-motion Acceleration of a Single Station (단일 지진관측소의 지반가속도 구간 누적값 및 최대값 파라미터를 이용한 실시간 지진규모 추정 연구)

  • Yun, Kwan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • In industrial facilities sites, the conventional method determining the earthquake magnitude (M) using earthquake ground-motion records is generally not applicable due to the poor quality of data. Therefore, a new methodology is proposed for determining the earthquake magnitude in real-time based on the amplitude measures of the ground-motion acceleration mostly from S-wave packets with the higher signal-to-ratios, given the Vs30 of the site. The amplitude measures include the bracketed cumulative parameters and peak ground acceleration (As). The cumulative parameter is either CAV (Cumulative Absolute Velocity) with 100 SPS (sampling per second) or BSPGA (Bracketed Summation of the PGAs) with 1 SPS. The arithmetic equations to determine the earthquake magnitude are derived from the CAV(BSPGA)-As-M relations. For the application to broad ranges of earthquake magnitude and distance, the multiple relations of CAV(BSPGA)-As-M are derived based on worldwide earthquake records and successfully used to determine the earthquake magnitude with a standard deviation of ${\pm}0.6M$.

An Experimental Study on the Liquefaction Behavior under Various Loading Conditions (다양한 입력하중에서의 액상화 발생 특성 비교 연구)

  • Kim, Soo-Il;Hwang, Seon-Ju;Park, Keun-Bo;Choi, Jae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.320-327
    • /
    • 2005
  • Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal, wedge, increasing wedge and real earthquake loading are investigated focusing on the excess pore water pressure build up instead of liquefaction resistance strength in this paper. There are large differences between two types of earthquake loading - impact and vibration in liquefaction characteristics. The angle of phase change line of sinusoidal loading is very close to the vibration type, whereas the cumulative deviator stress and cumulative plastic strain are larger than two types of real earthquake loadings. On the other hand, the liquefaction characteristics of increasing wedge loadings are located in the range between vibration and impact earthquake loadings. It is concluded that the sinusoidal loading overestimates the resistance of soil under real earthquake loading. Based on results obtained, the increasing wedge loading can reflect the liquefaction behavior under real earthquake loadings more efficiently than sinusoidal loading based on equivalent uniform stress concept.

  • PDF

A Study on the Quality Improvement of Real-Time Earthquake Data (실시간 지진데이터 품질향상을 위한 연구)

  • Yoon, Jin-sub;Ryu, Se-hwan;Jeong, Ji-eun;Park, Ji-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.306-309
    • /
    • 2022
  • Recently, the frequency of earthquakes is rapidly increasing in Korea. As a result, concerns about earthquakes are increasing. Response and recovery in the event of an earthquake are also important, but it is necessary to identify management vulnerabilities in advance and perform prevention and preparation activities. K-water collects real-time earthquake data by operating an earthquake accelerator to manage facilities safe from earthquakes. In addition, real-time data is transmitted to external organizations. Therefore, various efforts are being made to improve the quality of data. In order to reduce the management vulnerability of the earthquake monitoring system in advance, high-quality data can be produced by minimizing the delay time of data collection and establishing a real-time quality analysis system and base for earthquake data using big data. Accordingly, it is expected to protect the lives and property of the people from earthquake disasters by securing dam safety management and high-quality earthquake data and providing rapid data to external institutions.

  • PDF

Evaluation of Liquefaction Resistance Strength based on the Cyclic Triaxial Tests using Real Earthquake Loading (실지진하중의 진동삼축시험에 기초한 액상화 저항강도 산정)

  • 심재욱;김수일;최재순;박근보
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.67-74
    • /
    • 2002
  • An experimental assessment on the dynamic behavior of saturated sand which can consider the irregular characteristics of earthquakes was proposed. The equivalent uniform stress concept presented by Seed and Idriss has been applied to evaluate the liquefaction resistance strength to simplify earthquake loading. However, it was known that the liquefaction resistance strength of soil based on the equivalent uniform stress concept can't exactly mirror the dynamic characteristics of the irregular earthquake motion. In this study, estimation of the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between excess pore water pressure and the earthquake characteristics such as magnitude or duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.

  • PDF

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

Data Processing of earthquake data from KEPRI seismic monitoring system (전력연구원 지진관측망 계측지진 분석을 사전자료 처리)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.58-65
    • /
    • 2001
  • It is essential to know exactly what the response of the seismograph is inclusive of characteristic of the seismic sensors before using it for detailed seismic study. This is because the recorded earthquake data can be more or less affected by the overall system and need to be corrected properly to the analysis`s best to obtain the right results. In this respect, two basic earthquake data processing techniques are introduced and applied, for validation purpose, to real data from KEPRI seismic monitoring system which were established for determining the site-specific characteristics of the earthquakes around the Nuclear Power Plants. One is conventional instrumental correction technique for velocity data and the other is for removing acausal ringing originate from using linear phase FIR filter. These techniques are all implemented in the time domain using digital filtering process and shows the desired results when applied to real earthquake data.

  • PDF