• Title/Summary/Keyword: Real dimension

Search Result 499, Processing Time 0.025 seconds

The Role of Modeling in Prosthetics Make-up (보철분장에 있어 모델링의 역할)

  • Lee, Hwa-Jin
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.2 no.3 s.3
    • /
    • pp.60-67
    • /
    • 2004
  • Representing all the parts of human body visible to fit into the script, it can be told that real make-up has been done. Based on the point of view. it will be different from others. To become the beautiful, beauty make-up has to be done, however, to be someone described in the script or any other factions after analyzing characters of being represented, special make-up fits into that category. In the special make-up, there are two different pins: one is 2 dimension make-up which is describing images using dots, lines and colors and other is 3 dimension which will include necessary shapes to figure. Even though there seems to be different between modern technologies and handy work, since accurate measures and graphics have to be used to make perfect character describes in the script, more investments and studies than before have to be made. Real attraction of 3 dimension make-up is building up the images and shapes using unseen abstract images having analyzing characters. It will be decided in the working process called modeling. As having distinguished this part from other make-ups as named prosthetics make-up, proposing means and measures of prosthetics make-up will actually help the others who are studying make-up.

  • PDF

A Study on the System of the Precision Dimensional Measurements for Molded Product Carbon Materials (탄소재 성형품에 대한 정밀 치수 검사 시스템에 관한 연구)

  • Kim, Dae-Nyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.37-42
    • /
    • 2016
  • This paper proposes a method to develop a high-precision dimension measurement system using a linear variable differential transformer sensor. The Dimension targets for measurement is carbon material vanes of key element in the rotating parts within vehicle circulating pump. Data acquisition system for dimension measurement is designed using the NI Compact RIO. And the program applying the dimension measurement algorithm is built using NI LabVIEW. The dimension measuring program is composed of a FPGA program, Real Time program and Host program. The method of the experiment compares master vane with target vane for measure the length of the carbon material vane. The experimental results confirmed the usefulness of the accuracy within ${\pm}4um$.

On hierarchical clustering in sufficient dimension reduction

  • Yoo, Chaeyeon;Yoo, Younju;Um, Hye Yeon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.431-443
    • /
    • 2020
  • The K-means clustering algorithm has had successful application in sufficient dimension reduction. Unfortunately, the algorithm does have reproducibility and nestness, which will be discussed in this paper. These are clear deficits for the K-means clustering algorithm; however, the hierarchical clustering algorithm has both reproducibility and nestness, but intensive comparison between K-means and hierarchical clustering algorithm has not yet been done in a sufficient dimension reduction context. In this paper, we rigorously study the two clustering algorithms for two popular sufficient dimension reduction methodology of inverse mean and clustering mean methods throughout intensive numerical studies. Simulation studies and two real data examples confirm that the use of hierarchical clustering algorithm has a potential advantage over the K-means algorithm.

Iterative projection of sliced inverse regression with fused approach

  • Han, Hyoseon;Cho, Youyoung;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.205-215
    • /
    • 2021
  • Sufficient dimension reduction is useful dimension reduction tool in regression, and sliced inverse regression (Li, 1991) is one of the most popular sufficient dimension reduction methodologies. In spite of its popularity, it is known to be sensitive to the number of slices. To overcome this shortcoming, the so-called fused sliced inverse regression is proposed by Cook and Zhang (2014). Unfortunately, the two existing methods do not have the direction application to large p-small n regression, in which the dimension reduction is desperately needed. In this paper, we newly propose seeded sliced inverse regression and seeded fused sliced inverse regression to overcome this deficit by adopting iterative projection approach (Cook et al., 2007). Numerical studies are presented to study their asymptotic estimation behaviors, and real data analysis confirms their practical usefulness in high-dimensional data analysis.

DR-LSTM: Dimension reduction based deep learning approach to predict stock price

  • Ah-ram Lee;Jae Youn Ahn;Ji Eun Choi;Kyongwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.213-234
    • /
    • 2024
  • In recent decades, increasing research attention has been directed toward predicting the price of stocks in financial markets using deep learning methods. For instance, recurrent neural network (RNN) is known to be competitive for datasets with time-series data. Long short term memory (LSTM) further improves RNN by providing an alternative approach to the gradient loss problem. LSTM has its own advantage in predictive accuracy by retaining memory for a longer time. In this paper, we combine both supervised and unsupervised dimension reduction methods with LSTM to enhance the forecasting performance and refer to this as a dimension reduction based LSTM (DR-LSTM) approach. For a supervised dimension reduction method, we use methods such as sliced inverse regression (SIR), sparse SIR, and kernel SIR. Furthermore, principal component analysis (PCA), sparse PCA, and kernel PCA are used as unsupervised dimension reduction methods. Using datasets of real stock market index (S&P 500, STOXX Europe 600, and KOSPI), we present a comparative study on predictive accuracy between six DR-LSTM methods and time series modeling.

Three Dimensional Euclidean Minimum Spanning Tree for Connecting Nodes of Space with the Shortest Length (공간 노드들의 최단연결을 위한 3차원 유클리드 최소신장트리)

  • Kim, Chae-Kak;Kim, In-Bum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.161-169
    • /
    • 2012
  • In general, Euclidean minimum spanning tree is a tree connecting input nodes with minimum connecting cost. But the tree may not be optimal when applied to real world problems of three dimension. In this paper, three dimension Euclidean minimum spanning tree is proposed, connecting all input nodes of 3-dimensional space with minimum cost. In experiments for 30,000 input nodes with 100% space ratio, the tree produced by the proposed method can reduce 90.0% connection cost tree, compared with the tree by two dimension Prim's minimum spanning tree. In two dimension plane, the proposed tree increases 251.2% connecting cost, which is pointless in 3-dimensional real world. Therefore, the proposed method can work well for many connecting problems in real world space of three dimensions.

Comparison of Methods for Reducing the Dimension of Compositional Data with Zero Values

  • Song, Taeg-Youn;Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.559-569
    • /
    • 2012
  • Compositional data consist of compositions that are non-negative vectors of proportions with the unit-sum constraint. In disciplines such as petrology and archaeometry, it is fundamental to statistically analyze this type of data. Aitchison (1983) introduced a log-contrast principal component analysis that involves logratio transformed data, as a dimension-reduction technique to understand and interpret the structure of compositional data. However, the analysis is not usable when zero values are present in the data. In this paper, we introduce 4 possible methods to reduce the dimension of compositional data with zero values. Two real data sets are analyzed using the methods and the obtained results are compared.

Intensive numerical studies of optimal sufficient dimension reduction with singularity

  • Yoo, Jae Keun;Gwak, Da-Hae;Kim, Min-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • Yoo (2015, Statistics and Probability Letters, 99, 109-113) derives theoretical results in an optimal sufficient dimension reduction with singular inner-product matrix. The results are promising, but Yoo (2015) only presents one simulation study. So, an evaluation of its practical usefulness is necessary based on numerical studies. This paper studies the asymptotic behaviors of Yoo (2015) through various simulation models and presents a real data example that focuses on ordinary least squares. Intensive numerical studies show that the $x^2$ test by Yoo (2015) outperforms the existing optimal sufficient dimension reduction method. The basis estimation by the former can be theoretically sub-optimal; however, there are no notable differences from that by the latter. This investigation confirms the practical usefulness of Yoo (2015).

Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification

  • Yang, Su Hyeong;Shin, Seung Jun;Sung, Wooseok;Lee, Choon Won
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.603-614
    • /
    • 2022
  • The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing sufficient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers' face shape, demonstrating its utility in the top-k classification problem.

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.