• Title/Summary/Keyword: Real Time X-Ray Imaging

Search Result 30, Processing Time 0.028 seconds

Investigation of molten fuel coolant interaction phenomena using real time X-ray imaging of simulated woods metal-water system

  • Acharya, Avinash Kumar;Sharma, Anil Kumar;Avinash, Ch.S.S.S.;Das, Sanjay Kumar;Gnanadhas, Lydia;Nashine, B.K.;Selvaraj, P.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1442-1450
    • /
    • 2017
  • In liquid metal fast breeder reactors, postulated failures of the plant protection system may lead to serious unprotected accidental consequences. Unprotected transients are generically categorized as transient overpower accidents and transient under cooling accidents. In both cases, core meltdown may occur and this can lead to a molten fuel coolant interaction (MFCI). The understanding of MFCI phenomena is essential for study of debris coolability and characteristics during post-accident heat removal. Sodium is used as coolant in liquid metal fast breeder reactors. Viewing inside sodium at elevated temperature is impossible because of its opaqueness. In the present study, a methodology to depict MFCI phenomena using a flat panel detector based imaging system (i.e., real time radiography) is brought out using a woods metal-water experimental facility which simulates the $UO_2-Na$ interaction. The developed imaging system can capture attributes of the MFCI process like jet breakup length, jet front velocity, fragmented particle size, and a profile of the debris bed using digital image processing methods like image filtering, segmentation, and edge detection. This paper describes the MFCI process and developed imaging methodology to capture MFCI attributes which are directly related to the safe aspects of a sodium fast reactor.

A Study on the Parallel Processing Architecture for the Real Time Image Reconstruction of X-ray CT (X-ray CT의 실시간 영상재구성을 위한 병렬처리 구조에 관한 연구)

  • Jin, Seung-Oh;Heo, Chang-Won;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3153-3155
    • /
    • 1999
  • 최근 수년간 의료영상분야는 국내외적으로 급격한 발전을 거듭하고 있다. 특히 자기공명영상장치 (Magnetic Resonance Imaging), X-ray CT(Computed Tomography)와 단층촬영장치는 인체내부를 비침습적(non-invasive)으로 영상화함으로써 해부학적인 질병진단에 많은 장점을 가지고 있다. 이와같은 단층영상 재구성에는 역매트릭스법(matrix inversion). 반복재구성법(interative method), 역투영 법(back-projection), 2차원 Fourier 변환법(2D FFT), 중첩재구성법(Filtered back-projection) 등의 다양한 알고리즘을 사용하고 있다. 본 연구에서는 X-ray CT에서의 단층영상재구성 기법 중 널리 사용되고 있는 Filtered Back Projection 기법의 연산순서도와 연산량을 분석하고 이를 시뮬레이션을 통하여 확인하고 실시간 영상재구성을 위하여 범용 Digital Signal Processor의 병렬처리시스템 구성에 기반된 최적 Architecture를 선정하고자 한다.

  • PDF

The Optimization of NDT Method for Real Time X-ray Imaging (X선 실시간 영상장치를 이용한 비파괴시험 조건 최적화 연구)

  • Na, Sung-Youb;Choi, Yong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • This study has investigated the optimization of NDT method and the minimum detectable defect size for complex structures such as the solid propellant rocket motor using real time X-ray imaging system. Test specimens were made of steel plates with various defect size, and installed with proper thickness for which solid propellant, rubber, and case converted to the steel equivalent thickness according to the radiographic equivalent theory. As the results, this examination obtained optimum magnification and X-ray energy, dose rate according to steel equivalent thickness, also, obtained the relationship between minimum detectable defect size and the ratio(defect depot/object thickness). Thus, this simulated test is the preliminary procedure before performing NDT for real objects, and is possibly applied for NDT of other complex structures.

  • PDF

The Weldability of 6mm$^{t}$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (III) - Real-time X-ray Imaging Observation of Defect Formation of Laser Welding - (6mm$^{t}$ 조선용 Primer코팅강판의 $CO_2$레이저 용접성 (III) - X-선 투과영상시스템에 의한 결함형성거동의 리얼타임관찰 -)

  • 김종도;박현준;이종봉;김영식
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.103-105
    • /
    • 2004
  • 키홀 용접현상에 관한 연구는, 키홀 현상이 용융금속내부에서 아주 빠른 속도로 과도적으로 이루어지기 때문에 그 계측과 해석이 곤란하여 수 많은 가정이나 가설 하에서 용입형상과 키홀의 거동에 관한 해석이 국한된 영역에서 이루어지고 있는 것이 현실이다. (중략)

  • PDF

The Manufacture of Digital X-ray Devices and Implementation of Image Processing Algorithm (디지털 X-ray 장치 제작 및 영상 처리 알고리즘 구현)

  • Kim, So-young;Park, Seung-woo;Lee, Dong-hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.195-201
    • /
    • 2020
  • This study studied scoliosis, one of the most common modern diseases caused by lifestyle patterns of office workers sitting in front of computers all day and modern people who use smart phones frequently. Scoliosis is a typical complication that takes more than 80% of the nation's total population at least once. X-ray are used to test for these complications. X-ray, a non-destructive testing method that allows scoliosis to be easily performed and filmed in various areas such as the chest, abdomen and bone without contrast agents or other instruments. We uses NI DAQ to miniaturize digital X-ray imaging devices and image intensifier in self-shielding housing with Vision Assistant for drawing lines to the top and the bottom of the spine to acquire angles, i.e. curvature in real-time. In this way, the research was conducted to see scoliosis patients and their condition easily and to help rapid treatment for solving the problem of posture correction in modern people.

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF

Comprehensive understanding of atrial septal defects by imaging studies for successful transcatheter closure

  • Song, Jinyoung
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.7
    • /
    • pp.297-303
    • /
    • 2014
  • Transcatheter closure of atrial septal defects has become a popular procedure. The availability of a preprocedural imaging study is crucial for a safe and successful closure. Both the anatomy and morphology of the defect should be precisely evaluated before the procedure. Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results. During the procedure, real-time 3D echocardiography can be used to guide an accurate closure. The safety and efficiency of transcatheter closures of atrial septal defects could be improved through the use of detailed imaging studies.

A Minimally Invasive Rabbit Model of Progressive and Reproducible Disc Degeneration Confirmed by Radiology, Gene Expression, and Histology

  • Kwon, Young-Joon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.323-330
    • /
    • 2013
  • Objective : To develop a simple, reproducible model of disc degeneration in rabbits through percutaneous annular puncture and to confirm the degree of degeneration over time. Methods : Fifteen New Zealand white rabbits (4 to 5 months old and weighing approximately 3 to 3.5 kg each) underwent annular puncture of the L2-L3, L3-L4, and L4-L5 discs. Rabbits were sacrificed at 4, 8, or 20 weeks after puncture. For a longitudinal study to assess changes in disc height over time, serial X-rays were performed at 0, 2, 4, 8, and 20 weeks for rabbits in the 20-week group. Upon sacrifice, the whole spinal column and discs were extracted and analyzed with magnetic resonance imaging (MRI), real time reverse transcriptase-polymerase chain reaction, and histological staining. Results : The X-rays showed a slow, progressive decrease in disc height over time. Significant disc space narrowing compared to preoperative disc height was observed during the time period (p<0.001). The MRI grade, aggrecan, and matrix metalloprotease-13 mRNA expression and hematoxylin and eosin/safranin O/anti-collagen II staining were consistently indicative of degeneration, supporting the results of the X-ray data. Conclusion : Percutaneous annular puncture resulted in slow, reproducible disc degeneration that was confirmed by radiology, biochemistry, and histology. This in vivo model can be used to study and evaluate the safety and efficacy of biologic treatments for degenerative disc disease.

Development of Multi-channel Detector of X-ray Backscatter Imaging (후방산란 엑스선 영상획득을 위한 다채널 검출기 개발)

  • Lee, Jeonghee;Park, Jongwon;Choi, Yungchul;Lim, Chang Hwy;Lee, Sangheon;Park, Jaeheung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.245-247
    • /
    • 2022
  • Backscattered x-ray imaging is a technology capable of acquiring an image inside an irradiated object by measuring X-rays scattered from an object. For image acquisition, the system must include an X-ray generator and a detection system for measuring scattered x-rays. The imaging device must acquire a real-time signal at sampling intervals for x-rays generated by passing through a high-speed rotating collimator, and for this purpose, a high-speed signal acquisition device is required. We developed a high-speed multi-channel signal acquisition device for converting and transmitting signals generated by the sensor unit composed of a large-area plastic scintillator and a photomultiplier tube. The developed detector is a system capable of acquiring signals at intervals of at least 15u seconds and converting and transmitting signals of up to 6 channels. And a system includes remote control functions such as high voltage, signal gain, and low level discrimination for individual calibration of each sensor. Currently, we are conducting an application test for image acquisition under various conditions.

  • PDF

Quantitative Evaluation of Sparse-view CT Images Obtained with Iterative Image Reconstruction Methods (반복적 연산으로 얻은 Sparse-view CT 영상에 대한 정량적 평가)

  • Kim, H.S.;Gao, Jie;Cho, M.H.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.257-263
    • /
    • 2011
  • Sparse-view CT imaging is considered to be a solution to reduce x-ray dose of CT. Sparse-view CT imaging may have severe streak artifacts that could compromise the image qualities. We have compared quality of sparseview images reconstructed with two representative iterative reconstruction techniques, SIRT and TV-minimization, in terms of image error and edge preservation. In the comparison study, we have used the Shepp-Logan phantom image and real CT images obtained with a micro-CT. In both phantom image and real CT image tests, TV-minimization technique shows the best performance in error reduction and preserving edges. However, the excessive computation time of TV-minimization is a technical challenge for the practical use.