Kim, Byung-Gyu;Hong, Gwang-Soo;Kim, Ji-Hae;Choi, Young-Ju
Journal of Multimedia Information System
/
제4권4호
/
pp.285-288
/
2017
In this paper, we propose a vision-based object detection and tracking system using online learning. The proposed system adopts a feature point-based method for tracking a series of inter-frame movement of a newly detected object, to estimate rapidly and toughness. At the same time, it trains the detector for the object being tracked online. Temporarily using the result of the failure detector to the object, it initializes the tracker back tracks to enable the robust tracking. In particular, it reduced the processing time by improving the method of updating the appearance models of the objects to increase the tracking performance of the system. Using a data set obtained in a variety of settings, we evaluate the performance of the proposed system in terms of processing time.
Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
ETRI Journal
/
제45권5호
/
pp.847-861
/
2023
Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.
밀리미터파 영상시스템은 의복을 투과하는 성질이 뛰어나서 의복 속에 숨겨둔 은닉 물체를 탐지하는 분야에 활용된다. 더불어 수동형 밀리미터파 영상 시스템은 능동형 시스템과 달리 실내외의 개방된 공간에서 움직이는 대상자들의 탐지가 가능하다. 그러나 수동형 밀리미터파 영상은 일반적으로 회절의 제한과 낮은 신호 레벨로 해상도가 낮으며 잡음의 영향이 크다. 그러므로 영상을 효과적으로 처리하기 위한 신호의 모델링과 통계적 분석이 요구된다. 본 논문에서 은닉 물체 검출을 수행하는 밀리미터파 영상 분할 알고리즘을 C++로 구현하여 실시간으로 처리한다. 영상의 분석을 위하여 밀리미터파 영상의 히스토그램을 혼합 가우시안 모델로 추정하고 은닉 물체를 다단계 영상 분할 방법으로 추출한다. 다단계 분할은 배경에서 몸체를 분리하는 전역분할과 은닉물체를 몸체에서 분리하는 국소분할로 이루어진다. 각 분할단계는 $k$-means, EM 추정, 판정단계로 구성되어 있다. 실험에서 실외에서 획득한 수동형 밀리미터파 영상을 분석하여 은닉 물체를 실시간으로 검출할 수 있음을 확인한다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제27권4호
/
pp.311-323
/
2023
This paper introduces the industrial problem, the solution, and the results of the research conducted with Define Inc. The client company wanted to improve the performance of an object detection model on the floor plan dataset. To solve the problem, we analyzed the operational principles, advantages, and disadvantages of the existing object detection model, identified the characteristics of the floor plan dataset, and proposed to use of YOLO v5 as an appropriate object detection model for training the dataset. We compared the performance of the existing model and the proposed model using mAP@60, and verified the object detection results with real test data, and found that the performance increase of mAP@60 was 0.08 higher with a 25% shorter inference time. We also found that the training time of the proposed YOLO v5 was 71% shorter than the existing model because it has a simpler structure. In this paper, we have shown that the object detection model for the floor plan dataset can achieve better performance while reducing the training time. We expect that it will be useful for solving other industrial problems related to object detection in the future. We also believe that this result can be extended to study object recognition in 3D floor plan dataset.
이동 객체 검출은 입력 영상에서 배경과 다른 전경 객체를 찾는 것을 말하는 것으로 지능 영상 감시, HCI, 객체 기반 영상 압축 등의 여러 영상 처리 응용 분야에서 필요한 과정이다. 기존의 이동 객체 검출 알고리즘은 상당한 계산량을 요구하여 다채널 영상 감시 응용, 또는 임베디드 시스템에서의 단일 채널의 실시간 응용에 사용하는 데 애로가 많다. 보다 정확한 이동 객체 검출을 위하여 필요한 과정인 전경 마스크 정정은 보통 열림, 닫힘 등의 모폴로지 연산을 통해 수행된다. 모폴로지 연산은 계산량이 적지 않고 게다가 프로세싱 방법이 달라 이동 객체 검출의 다음 단계인 연결 요소 레이블링 루틴과 동시에 처리되기 어렵다. 본 논문에서는 먼저 모폴로지 연산과는 달리 연결 요소 레이블링 루틴에서 사용되는 주변 픽셀 점검 과정을 활용한 전경 마스크 정정 알고리즘인 "주변 전경 픽셀 전파"을 고안하고, 이를 활용하여 전경 마스크 정정과 연결 요소 레이블링이 동시에 수행될 수 있는 이동 객체 검출 방법을 제안한다. 실험을 통해, 제안된 이동 객체 검출 방법이 기존의 모폴로지 연산을 사용한 방법 보다 정확하게 이동 객체를 검출하였으며, 대상 실험 영상 프레임 및 비디오에 대해서는 최소 4배 이상 신속하게 처리됨을 확인하였다.
Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae;Cho, Seongwon
한국멀티미디어학회논문지
/
제19권8호
/
pp.1345-1360
/
2016
In this paper, we propose a new real-time human detection under omni-directional cameras for visual surveillance purpose, based on CNN with unified detection and AGMM. Compared to CNN-based state-of-the-art object detection methods. YOLO model-based object detection method boasts of very fast object detection, but with less accuracy. The proposed method adapts the unified detecting CNN of YOLO model so as to be intensified by the additional foreground contextual information obtained from pre-stage AGMM. Increased computational time incurred by additional AGMM processing is compensated by speed-up gain obtained from utilizing 2-D input data consisting of grey-level image data and foreground context information instead of 3-D color input data. Through various experiments, it is shown that the proposed method performs better with respect to accuracy and more robust to environment changes than YOLO model-based human detection method, but with the similar processing speeds to that of YOLO model-based one. Thus, it can be successfully employed for embedded surveillance application.
Although the object detection accuracy with a single image has been significantly improved with the advance of deep learning techniques, the detection accuracy for pig monitoring is challenged by occlusion problems due to a complex structure of a pig room such as food facility. These detection difficulties with a single image can be mitigated by using a video data. In this research, we propose a method in pig detection for video monitoring environment with a static camera. That is, by using both image processing and deep learning techniques, we can recognize a complex structure of a pig room and this information of the pig room can be utilized for improving the detection accuracy of pigs in the monitored pig room. Furthermore, we reduce the execution time overhead by applying a pruning technique for real-time video monitoring on an embedded board. Based on the experiment results with a video data set obtained from a commercial pig farm, we confirmed that the pigs could be detected more accurately in real-time, even on an embedded board.
다빈치 프로세서는 임베디드 멀티미디어 응용 구현 프로세서로 많이 사용된다. ARM 9 코어 및 DSP 코어의 듀얼 코어로 되어 있어 ARM 코어 에서는 주변 장치 제어, 비디오 입출력 제어, 네트워킹 등을 지원하며, DSP 코어는 보다 효율적인 디지털 신호 처리 연산을 지원한다. 본 논문에서는 본 저자들의 연구실에서 만들고 있는 다빈치 프로세서 기반의 스마트 카메라에 있어서 객체 추적 알고리즘의 최적 구현 방안 노력을 기술한다. 본 논문의 스마트 카메라는 입력 영상에서 관심 객체를 검출하고 이를 추적하며, 분류하고 감시구역에 침입한 경우 이를 IP 프로토콜로 원격 클라이언트에게 통보하는 기능을 보유한다. 객체 추적은 전방 마스크 추출, 전방 마스크 교정, 연결 요소 레이블링, 블롭 지역 계산 등 계산량이 많은 절차들로 구성되어 효율적으로 구현되지 않으면 실시간 처리가 힘들다.
Recently, starting with smart construction research, interest in technology that automates construction site management using artificial intelligence technology is increasing. In order to automate construction site management, it is necessary to recognize objects such as construction equipment or workers, and automatically analyze the relationship between them. For example, if the relationship between workers and construction equipment at a construction site can be known, various use cases of site management such as work productivity, equipment operation status monitoring, and safety management can be implemented. This study derives a real-time object detection platform architecture that is required when performing construction site management using deep learning technology, which has recently been increasingly used. To this end, deep learning models that support real-time object detection are investigated and analyzed. Based on this, a deep learning model development process required for real-time construction site object detection is defined. Based on the defined process, a prototype that learns and detects construction site objects is developed, and then platform development considerations and architecture are derived from the results.
웹 카메라를 이용한 실시간 도난 방지 시스템은 움직임 객체를 구분하고 행동에 대한 분석을 통해서 그에 상응한 대응을 실시간으로 하여야 한다. 카메라를 통한 실시간 영상에서 객체의 움직임 검출은 불필요한 잡음, 조명의 변화, 가려짐 현상 등에 따라 정확한 움직임을 검출하는 것이 어렵다. 본 논문에서는 이중카메라와 초음파 센서를 이용하여 특정객체의 정확한 움직임검출을 위한 향상된 검출방법인 실시간 도난방지 시스템을 제안하였다 즉, 초음파 센서를 위치변화 측정을 위한 요소로 사용하였고, 전면과 상단의 카메라의 정보를 통해 특정객체를 지속적으로 추적할 수 있음을 실험을 통해 검증하였다 실험결과 제안한 시스템은 97.4%의 객체 추출률을 얻을 수 있었으며, 객체의 가려짐 현상에서 지속적이고 정확한 추적을 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.