상태공간(狀態空間) 개념(槪念)에 기초(基礎)를 두어 시스템의 동적(動的) 거동(擧動)을 나타낸 Kalman filter와 자기공진(自己共振) 예측자(豫測子)의 순환(循還) 알고리즘에 의한 예측방법(豫測方法)을 연구(硏究)하여 하천유출(河川流出) 예측(豫測)에의 적용성(適用性)을 검토(檢討)하고 그 결과(結果)를 제시하였다. 강우(降雨)-유출과정(流出過程)의 동적(動的) 거동(擧動)을 자색(白色) Gaussian 잡음(雜音)이 있는 선형(線型), 이산형(離散型)시스템으로 보아서 낮은 차수(次數)의 ARMA 과정(過程)으로 나타내었으며 예측모형(豫測模型)의 상태(狀態)벡터를 random walk로 나타내었다. 예측오차(豫測誤差)에 대한 통계적(統計的)인 분석(分析)으로 모형구조(模型構造)를 결정하였으며 적용(適用)된 예측(豫測)알고리즘의 검정(檢正)을 위하여 시우량(時雨量)과 시유량(時流量)의 과거(過去) 기록치(記錄値)를 사용하였다. 예측결과(豫測結果)를 분석(分析)하나 Kalman filter에 의한 알고리즘이 자기공진(自己共振) 예측자(豫測子)보다 우수하다는 것을 알 수 있었다.
The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.
출발지 기준 고속도로 경로 통행시간(PTTDP)은 첨단여행자정보시스템(ATIS)의 핵심 정보이다. 이러한 필요성에도 불구하고, 지능형교통체계(ITS)의 예측분야에서 PTTDP에 대한 연구는 성공적으로 극복해야할 핵심 도전과제중 하나로 남아있는 상태이다. 이러한 문제점을 효과적으로 극복하기 위하여, 본 연구에서는 고속도로 IC간 경로통행시간을 동적으로 예측하는 방법론을 제시하고자 한다. 제안된 모형은 고속도로망에서 TG의 교통수요와 TG간 출발지기준 경로통행시간간의 관계를 기반으로 개발되었다. 모형의 입력 자료로(TCS로 수집되는) 통행수요와(DSRC로 수집되는) 경로통행시간 자료가 이용되었다. 개발 모형은 고속도로 정보시스템에 탑재/운영하기 위하여 Data Ming 기법중 연산속도가 빠른 k-최근린 이웃을 이용하였다. 실제 자료를 이용한 적용 실험에서, 제안된 모형은 예측의 신뢰성과 연산수행속도 측면에서 ATIS에 적용이 가능한 수준의 성능을 보였다.
The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using two-dimensional model by the combination of land-sea breezes and transport. The pollutants emitted into the simulated wind field in considering with the mesoscale local circulations. The typical effects of land-sea breezes and tophography of coastal area on the dispersion are discussed in detail, and the model is proved as an useful tool to pridict real time pollutant transport by the results of application studies in Pusan, Korea where the urbanized coastal area with mountainous topography. It was found that sulfur dioxide ($SO_2$) are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. Key words : land-sea breezes, sulfur dioxide, dispersion, coastal area.
본(本) 연구(硏究)는 우량관측소(雨量觀測所)가 미비(未備)된 소유성(小流城)에서 실시간(實時間) 유출예측(流出豫測)을 위해 Kalman filter를 이용했으며 이때의 시스템모형(模型)으로 AR(2)를 택하였다. 시간별(時間別) 유출자료는 영산강유역(榮山江流域)의 나주(羅州) 관측지점(觀測地點)에서 관측된 시간별 유량자료률 이용하였다. 여기서 예측된 모든 결과는 통계적(統計的) 방법으로 분석(分折)한 결과, Kalman filter에 의한 유출예측(流出豫測)을 좋은 결과(結果)를 얻을 수 있었으며 과정모형(過程模型)으로서 AR(2)가 적합한 것을 알 수 있었다. 또한 홍수예측에도 효과적임이 입증되었다.
A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.
최근 스마트선박 개발에 발맞춰 정확하고 세밀한 실시간 해양환경 예측정보의 요구가 확대되고 선박에 직접 지원하기 위한 환경이 확보됨에 따라 최적항로 분야에서도 다양한 해양환경을 고려한 정보 생산 및 평가 연구가 필요하다. 스마트선박에서 해양환경의 위험도 및 에너지 소비의 불확실성을 줄이면서 최적항로를 산출할 수 있는 알고리즘은 2단계로 구분하여 개발하였다. 1단계는 해양환경정보들과 선박자동식별시스템(AIS)내에 선박의 위치·상태정보를 결합해 프로파일을 생성하였다. 2단계는 구성한 프로파일 결과를 이용하여 해양환경 에너지맵을 정의할 수 있는 모델을 개발하였고, 약 60만개의 데이터를 반영할 수 있도록 인공지능 머신러닝 기법 중 Random Forest를 적용하여 회귀식을 생성하였다. Random Forest 회귀 모델의 결정계수(R2)는 0.89 를 보였다. 생성한 모델에 2021년 6월 1일~3일의 해양환경 예측정보를 이용하여 Dijikstra 최단경로 알고리즘을 적용해 최적 안전항로를 산출하고 맵에 표출했다. Random Forest 회귀 모델로 산출된 항로는 유선적이고 해양환경 예측정보의 상태를 감안하며 항로를 도출하는 결과를 보였다. 본 연구의 실시간 해양환경 예측정보 기반의 항로 산출 개념은 선박의 이동 경향성을 반영한 현실적이면서 안전한 항로 산출이 가능하고, 향후 경제성, 안전성, 친환경성 평가 모델로 범위로 확대할 수 있을 것으로 기대된다.
본 연구는 현재 적용되고 있는 버스 도착 예측정보 생성 알고리즘에서 반영할 수 없었던 요소인 신호 지체시간을 고려한 버스 도착시간 예측 방법론을 제안하였다. 신호지체시간을 반영하기 위해 정류장간 통행시간을 서비스시간, 순통행시간, 신호지체시간으로 분할하였고, 신호지체시간은 교차로 도착시간과 신호운영계획(TOD)를 이용하여 추정하였다. 본 연구에서 제안한 방법론으로 도착시간을 예측할 때에 발생하는 오차 대부분이 약 ${\pm}30$초 이내로 나타났으나 일부 다소 큰 값의 오차를 발견할 수 있었는데 이러한 오차의 발생 원인은 예측 신호주기보다 앞 신호주기에 통과했기 때문인 것으로 분석되었다. 교차로 도착시각을 관측값이 아닌 추정값을 사용하는 본 방법론의 특성상 광역버스 등의 도착시각을 예측할 수 없는 한계가 존재한다. 실시간 위치정보를 통해 이를 개선하는 등의 향후 연구를 통해 본 방법론의 정확도를 크게 향상시킬 수 있을 것이다.
Van, Son Nguyen;Hong, Nhan Vu Thi;Quang, Dung Pham;Xuan, Hoai Nguyen;Babaki, Behrouz;Dries, Anton
ETRI Journal
/
제44권2호
/
pp.220-231
/
2022
Building smart transportation services in urban cities has become a worldwide problem owing to the rapidly increasing global population and the development of Internet-of-Things applications. Traffic congestion and environmental concerns can be alleviated by sharing mobility, which reduces the number of vehicles on the road network. The taxi-parcel sharing problem has been considered as an efficient planning model for people and goods flows. In this paper, we enhance the functionality of a current people-parcel taxi sharing model. The adapted model analyzes the historical request data and predicts the current service demands. We then propose two novel online routing algorithms that construct optimal routes in real-time. The objectives are to maximize (as far as possible) both the parcel delivery requests and ride requests while minimizing the idle time and travel distance of the taxis. The proposed online routing algorithms are evaluated on instances adapted from real Cabspotting datasets. After implementing our routing algorithms, the total idle travel distance per day was 9.64% to 12.76% lower than that of the existing taxi-parcel sharing method. Our online routing algorithms can be incorporated into an efficient smart shared taxi system.
빅데이터의 등장과 더불어 교통 상태 예측은 과거 이력 데이터 분석 방식에 힘을 싣고 발전되어 왔으나, 이 방법은 관측된 적 없는 돌발 상황에 충분히 대응하지 못한다는 약점이 있다. 본 연구에서는 기계학습과 시뮬레이션 기법의 융합을 통해 돌발 상황 발생 시 교통 상태 예측 정확도 감소를 보완할 수 있는 예측 기법을 제시한다. 데이터 기반 방식의 맹점은 과거에 관측된 적 없는 데이터 패턴이 인지되었을 때 드러난다. 본 연구에서는 시뮬레이션을 이용하여 과거 이력 데이터를 보강하는 방법으로 문제를 해결하고자 하였다. 제시한 방법은 기계학습 기반의 교통 예측을 수행하고, 예측 결과와 실시간으로 수집되는 교통 데이터를 지속적으로 비교하여 돌발 상황 발생 여부를 판단한다. 돌발 상황이 인지되었을 시, 시뮬레이션을 통해 생성한 데이터베이스를 활용하여 예측을 수행한다. 본 연구에서 제시한 방법은 실제 도로 구간을 대상으로 검증되었으며, 검증 결과 돌발 상황에서의 교통 상태 예측 정확도 향상을 확인할 수 있었다. 본 연구에서 제시한 융합 교통 예측 방법은 향후 교통 예측 고도화에 이바지할 수 있을 것으로 전망된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.