• Title/Summary/Keyword: Real Time Control

Search Result 6,858, Processing Time 0.04 seconds

Programing development environment for the elevator controller of real-time systems (실시간 시스템인 승강기 제어기 프로그램 개발)

  • Choe, Byeong-Uk;Im, Kye-Young;Go, Kyung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.622-629
    • /
    • 1999
  • This paper discusses a real time multi-tasking system model and a development environment for an elevator control system. Recently, as the elevator systems become large-scaled and operate with high speed, there are lots of software tasks to be processed with time constraints. Thus, the control systems are designed with distributed control structure and characteristics of typical real time systems. For stuructural design of such real time system, we introduce a multi-tasking model based on a real time operating system model and an software development environment based on virtual protopyping which simulates real system operation in the cross development of a new elevator system with distributed control structure and its system reliability can be verified through numerous field tests.

  • PDF

Implementation of TTP Network System for Distributed Real-time Control Systems (분산 실시간 제어 시스템을 위한 TTP 네트워크 시스템의 구현)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.596-602
    • /
    • 2007
  • Recently, many ECUs(Electronic Control Units) have been used to enhance the vehicle safety, which leads to a distributed real-time control system. The distributed real-time control system requires to reduce the network delay for dependable real-time performance. There are two different paradigms by which a network protocol operates: event-triggered and time-triggered. This paper focuses on implementation of a time-triggered protocol. i.e. TTP/C(Time-Triggered Protocol/class C). This paper presents a design method of TTP control network and performance evaluation of distributed real-time control system using TTP protocol.

A Dynamic Backoff Adjustment Method of IEEE 802.15.4 Networks for Real-Time Sporadic Data Transmission (비주기적 실시간 데이터 전송을 위한 IEEE 802.15.4 망의 동적 백오프 조정 기법에 대한 연구)

  • Lee, Jung-Il;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.318-325
    • /
    • 2008
  • In this paper, a dynamic backoff adjustment method of IEEE 802.15.4 is proposed for time-critical sporadic data in a noisy factory environment. For this, a superframe of IEEE 802.15.4 is applied to a real-time mixed data (periodic data, sporadic data, and non real-time message) transmission in factory communication systems. To guarantee a channel access of real-time sporadic(non-periodic) data, a transmission method using the dynamic backoff is applied to wireless control networks. For the real-time property, different initial BE, CW parameters are used for the dynamic backoff adjustment method. The simulat-ion results show an enhancement of the real-time performance of sporadic emergency data. The proposed method provides the channel access of real-time sporadic data efficiently, and guarantee real-time transmission simultaneously within a limite-d timeframe.

PROFIBUS에서 대역폭 할당 기법 구현

  • 김지용;홍승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.97-100
    • /
    • 1997
  • Fieldbuses are used as the lowest level communication network for real-time communication in factory automation and process control systems. Data generated from field devices can be divided into three categories: sporadic real-time, periodic real-time and non real-time data. Since these data share one fieldbus network medium, it needs a method that allocate the limited bandwidth of fieldbus network to the sporadic real-time, periodic real-time and non real-time traffic. This paper introduces an implementation method of bandwidth allocation scheme introduced in [51 on PROFIBUS. Using the modified PROFIBUS FDL(Fieldbus Data Link layer), the bandwidth allocation scheme introduced in [51 is verified by the experiments.

  • PDF

Implementation of Real-time EtherCAT Control System based on Open Source (오픈소스 기반의 실시간 EtherCAT 제어 시스템의 구현)

  • Yunjin Kyung;Dongil Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.281-284
    • /
    • 2023
  • Real-time control communication network system is important for developing defense robots because it affects environmental interaction, performance, and safety. We propose a real-time control communication network using the Xenomai real-time operating system and the open-source EtherCAT master library, SOEM. EtherCAT is an Ethernet-based industrial communication method. It has low latency and many functions such as cable redundancy and distributed clock synchronization. We use Xenomai RTOS and Intel NUC to develop the system. Experimental tests demonstrate the Real-time EtherCAT master implementation, and communication with CiA301-based slave devices. The jitter measurement was conducted to validate the real-time performance of the system. The proposed system shows possibility for real-time robotics applications in various defense robots.

Management and control of fieldbus network traffic by bandwidth allocation scheme (대역폭 할당 기법에 의한 필드버스 네트워크의 트래픽 관리 및 제어)

  • Hong, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.77-88
    • /
    • 1997
  • Fieldbus is the lowest level communication network in factory automation and process control systems. Performance of factory automation and process control systems is directly affected by the data delay induced by network traffic. Data generated from several distributed field devices can be largely divided into three categories: sporadic real-time, periodic real-time and non real-time data. Since these data share one fieldbus network medium, the limited bandwidth of a fieldbus network must be appropriately allocated to the sporadic real-time, periodic real-time and non real-time traffic. This paper introduces a new fieldbus design scheme which allocates the limited bandwidth of fieldbus network to several different kinds of traffic. The design scheme introduced in this study not only satisfies the performance requirements of application systems interconnected into the fieldbus but also fully utilizes the network resources. The design scheme introduced in this study can be applicable to cyclic service protocols operated under single-service discipline. The bandwidth allocation scheme introduced in this study is verified using a discrete-event/continuous-time simulation experiment.

  • PDF

Real-time line control system for automated robotic assembly line for multi-PCB models

  • Park, Jong-Oh;Hyun, Kwang-Ik;Um, Doo-Gan;Kim, Byoung-Doo;Cho, Sung-Jong;Park, In-Gyu;Kim, Young-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1915-1919
    • /
    • 1991
  • The efficiency of automated assembly line is increased by realizing the automation of each assembly cell, monitoring the line information and developing the real-time line control system it. which production flow is controllable. In this paper, the several modules which are important factors when constructing automated real-time control system, such as, line control S/W module, real-time model change module, error handling module and line production management S/W module, are developed. For developing these important programming modules, real-time control and multi-tasking techniques are integrated. In this paper, operating method of real-time line control in PCB automated assembly line is proposed and for effective control of production line by using multi-tasking technique, proper operating method for relating real-time line control with multi-tasking is proposed by defining the levels of signals and tasks. CIM-Oriented modular programming method considering expandability and flexibility will be added for further research in the future.

  • PDF

DEVELOPMENT OF TIMING ANALYSIS TOOL FOR DISTRIBUTED REAL-TIME CONTROL SYSTEM

  • Choi, J.B.;Shin, M.S.;M, Sun-Woo
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.269-276
    • /
    • 2004
  • There has been considerable activity in recent years in developing timing analysis algorithms for distributed real-time control systems. However, it is difficult for control engineers to analyze the timing behavior of distributed real-time control systems because the algorithms was developed in a software engineer's position and the calculation of the algorithm is very complex. Therefore, there is a need to develop a timing analysis tool, which can handle the calculation complexity of the timing analysis algorithms in order to help control engineers easily analyze or develop the distributed real-time control systems. In this paper, an interactive timing analysis tool, called RAT (Response-time Analysis Tool), is introduced. RAT can perform the schedulability analysis for development of distributed real-time control systems. The schedulability analysis can verify whether all real-time tasks and messages in a system will be completed by their deadlines in the system design phase. Furthermore, from the viewpoint of end-to-end scheduling, RAT can perform the schedulability analysis for series of tasks and messages in a precedence relationship.

A design and implementation of DOS-based multitasking Kernel of the real-time operating systems for robot controller (DOS 환경 로봇제어기용 실시간 운영체계를 위한 멀티태스킹 커널의 설계및 구현)

  • Jang, Ho;Lee, Ki-Dong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.373-380
    • /
    • 1997
  • In order to implement the real-time operating systems for robot controller, this paper proposes a systematic method for implementing the real-time kernel under the DOS environment. So far, we designed the robot control software and its own operating system simultaneously. Though robot operating systems have simple structure, it allows the developer to have a surplus time and effort to implement complete robot systems. In addition to this, in most cases of this type, operating systems does not support multitasking function, thus, low level hardware interrupts are used for real-time execution. Subsequently, some kinds of real-time tasks are hard to implement under this environment. Nowadays, the operating systems for robot controller requires multitasking functions, intertask communication and task synchronization mechanism, and rigorous real-time responsiveness. Thus, we propose an effective and low costs real-time systems for robot controller satisfying the various real-time characteristics. The proposed real-time systems are verified through real implementation.

  • PDF

A study on the real time control of flexible manufacturing system using colored and timed Petri Nets (페트리네트를 이용한 유연생산시스템의 실시간 제어에 관한 연구)

  • 노상도;김기범;김종원;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1099-1104
    • /
    • 1993
  • The real time control system for FMS(Flexible Manufacturing System) is implemented at this paper. To achieve this goal, the Colored and Timed Petri-Net model is constructed and used to simulate the real time operation of FMS. Using the Colored and Timed Petri-Net model, evaluating any kind of FMS plant is possible. On-line shceduler, intelligent dispatcher, real time monitor and the simulation model of shop floor are contructed using LAN communication, relational database system in this paper. Finally, this real time control system is applied to the FMS/CIM center at Seoul National University.

  • PDF