• Title/Summary/Keyword: Real Time Compensation

Search Result 383, Processing Time 0.03 seconds

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

A New Analysis and a Reduction Method of Computational Complexity for the Lattice Transversal Joint (LTJ) Adaptive Filter (격자 트랜스버설 결합 (LTJ) 적응필터의 새로운 해석과 계산량 감소 방법)

  • 유재하
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.438-445
    • /
    • 2002
  • In this paper, the necessity of the filter coefficients compensation for the lattice transversal joint (LTJ) adaptive filter was explained in general and with ease by analyzing it with respect to the time-varying transform domain adaptive filter. And also the reduction method of computational complexity for filter coefficients compensation was proposed using the property that speech signal is stationary during a short time period and its effectiveness was verified through experiments using artificial and real speech signals. The proposed adaptive filter reduces the computational complexity for filter coefficients compensation by 95%, and when the filter is applied to the acoustic echo canceller with 1000 taps, the total complexity is reduced by 82%.

Implementation of SA-DCT using a datapath (데이터패스를 이용한 SA-DCT 구현)

  • 박주현;김영민
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.25-32
    • /
    • 1998
  • In this paper, SA (shape adaptive)-DCT is implemented using a datapath with 4 MACs (multiplication & accumulator). DCT is a well-known bottleneck of real-time video compression using MPEG-like schemes. High-speed pipelined MACs presented here implement real-time DCT. A datapath in this paper executes DCT/IDCT algorithms for QCIF 15fps(frame per second), maximum rate of VLBV(very low bitrte video) in MPEG-4. A 32bit accumulator in a MAC prevents distortion caused by fixed-point process. It can be applied to various operations such as ME (motion estimation) and MC(motion compensation) with a absolutor and a halfer.

  • PDF

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.

Channel Compensation technique using silence cepstral mean subtraction (묵음 구간의 평균 켑스트럼 차감법을 이용한 채널 보상 기법)

  • Woo, Seung-Ok;Yun, Young-Sun
    • Proceedings of the KSPS conference
    • /
    • 2005.04a
    • /
    • pp.49-52
    • /
    • 2005
  • Cepstral Mean Subtraction (CMS) makes effectively compensation for a channel distortion, but there are some shortcomings such as distortions of feature parameters, waiting for the whole speech sentence. By assuming that the silence parts have the channel characteristics, we consider the channel normalization using subtraction of cepstral means which are only obtained in the silence areas. If the considered techniques are successfully used for the channel compensation, the proposed method can be used for real time processing environments or time important areas. In the experiment result, however, the performance of our method is not good as CMS technique. From the analysis of the results, we found potentiality of the proposed method and will try to find the technique reducing the gap between CMS and ours method.

  • PDF

The comparison of the Feedforward compensation and Computed-Torque control schemes (Computed-Torque 제어와 Feedforward 역학 보상 제어 방법의 비교 평가)

  • Chung, Yong-Oug;Bae, Jun-Kyung;Park, Chong-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.68-71
    • /
    • 1988
  • The purpose of this paper is to compare with the simulated results of two control algorithms control algorithm in the real time, based upon the model. These control schemes are "Computed-torque" and "Feedforward-Dynamics compensation", and have been simulated on the CMU DD Arm II.

  • PDF

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Accuracy Improvement of the Estimated Angle Using Phase Averaging in Phase-Comparison Monopulse Algorithm (위상 비교 모노 펄스 알고리즘에서 위상평균법을 이용한 추정 각도 정확도 향상)

  • Cho, Byung-Lae;Lee, Jung-Soo;Lee, Jong-Min;Sun, Sun-Gu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1212-1215
    • /
    • 2012
  • This study describes the accuracy improvement of the estimated angle using phase averaging in phase-comparison monopulse algorithm. In addition, to compensate the time-delay due to the phase averaging, we propose the time-delay compensation algorithm which uses the derivative of the estimated angle. These derivative is calculated by the curve fitting method. Using the real radar interferometer, we have verified that the phase averaging and time-delay compensation algorithms are effective in real-time signal processing application.

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF