• Title/Summary/Keyword: Real Product Image

Search Result 114, Processing Time 0.031 seconds

A Pipelined Parallel Optimized Design for Convolution-based Non-Cascaded Architecture of JPEG2000 DWT (JPEG2000 이산웨이블릿변환의 컨볼루션기반 non-cascaded 아키텍처를 위한 pipelined parallel 최적화 설계)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.29-38
    • /
    • 2009
  • In this paper, a high performance pipelined computing design of parallel multiplier-temporal buffer-parallel accumulator is present for the convolution-based non-cascaded architecture aiming at the real time Discrete Wavelet Transform(DWT) processing. The convolved multiplication of DWT would be reduced upto 1/4 by utilizing the filter coefficients symmetry and the up/down sampling; and it could be dealt with 3-5 times faster computation by LUT-based DA multiplication of multiple filter coefficients parallelized for product terms with an image data. Further, the reutilization of computed product terms could be achieved by storing in the temporal buffer, which yields the saving of computation as well as dynamic power by 50%. The convolved product terms of image data and filter coefficients are realigned and stored in the temporal buffer for the accumulated addition. Then, the buffer management of parallel aligned storage is carried out for the high speed sequential retrieval of parallel accumulations. The convolved computation is pipelined with parallel multiplier-temporal buffer-parallel accumulation in which the parallelization of temporal buffer and accumulator is optimize, with respect to the performance of parallel DA multiplier, to improve the pipelining performance. The proposed architecture is back-end designed with 0.18um library, which verifies the 30fps throughput of SVGA(800$\times$600) images at 90MHz.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Expiration Date Notification System Based on YOLO and OCR algorithms for Visually Impaired Person (YOLO와 OCR 알고리즘에 기반한 시각 장애우를 위한 유통기한 알림 시스템)

  • Kim, Min-Soo;Moon, Mi-Kyung;Han, Chang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1329-1338
    • /
    • 2021
  • There are rarely effective methods to help visually impaired people when they want to know the expiration date of products excepted to only Braille. In this study, we developed an expiration date notification system based on YOLO and OCR for visually impaired people. The handicapped people can automatically know the expiration date of a specific product by using our system without the help of a caregiver, fast and accurately. The proposed system is worked by four different steps: (1) identification of a target product by scanning its barcode; (2) segmentation of an image area with the expiration date using YOLO; (3) classification of the expiration date by OCR: (4) notification of the expiration date by TTS. Our system showed an average classification accuracy of about 86.00% when blindfolded subjects used the proposed system in real-time. This result validates that the proposed system can be potentially used for visually impaired people.

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

On-line Measurement and Characterization of Nano-web Qualities Using a Stochastic Sensor Fusion System Design and Implementation of NAFIS(NAno-Fiber Information System)

  • Kim, Joovong;Lim, Dae-Young;Byun, Sung-Weon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.45-46
    • /
    • 2003
  • A process control system has been developed for measurement and characterization of the nanofiber web qualities. The nano-fiber information system (NAFIS) developed consists of a measurement device and an analysis algorithm, which are a microscope-laser sensor fusion system and a process information system, respectively. It has been found that NAFIS is so successful in detecting irregularities of pore and diameter that the resulting product has been quitely under control even at the high production rate. Pore distribution, fiber diameter and mass uniformity have been readily measured and analyzed by integrating the non-contact measurement technology and the random function-based time domain signal/image processing algorithm. Qualifies of the nano-fiber webs have been revealed in a way that the statistical parameters for the characteristics above are calculated and stored in a certain interval along with the time-specific information. Quality matrix, scale of homogeneity is easily obtained through the easy-to-use GUI information. Finally, ANFIS has been evaluated both for the real-time measurement and analysis, and for the process monitoring.

  • PDF

A Study of raw materials loss prevention measurement based on IP Camera and RFID Box (IP Camera와 RFID Box를 이용한 원자재 유실 방지 방안 연구)

  • Choi, Kyong-Ho;Kim, Kuinam J.
    • Convergence Security Journal
    • /
    • v.15 no.3_2
    • /
    • pp.71-76
    • /
    • 2015
  • Global companies are building global production network for the demand of the global market. However, the establishment and operation of overseas plants make the unexpected case like theft, low will to produce and salary issue of local workers. Thus in this paper, we propose the raw materials loss prevention model based on IP Camera and RFID Box for raw materials management of overseas plants. This model can prevent the theft or loss of raw materials write inventory up in real-time. This model can be allows us to realize the cost-effective production management because it enables remote inventory management. And this model can prevent brand image danage and profit loss due to reject product.

A Study on Algorithm for Inspection of Automobile's plastic part locking lever (자동차 플라스틱 부품 락킹레버 검사를 위한 알고리즘 연구)

  • Jang, Bong-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1558-1563
    • /
    • 2010
  • This paper describes a study on algorithm for the development of machine vision system as well as the inspection of automobile's plastic part locking lever to replace a human worker's eye inspection. Before developing the machine vision system based on the PC, the purpose of this research is to develop the algorithm to decide whether a product is a good/bad one in real time inspection. NI-LabVIEW software is used in the inspection method and an inspection program is developed using LabVIEW Vision image functions. The inspection program was built and validated to help the system operator set up the inspection area and change the criteria number in the program.

A Study of Photoshop Retouching Technique for Beauty Make-up (뷰티 메이크업을 위한 포토샵 리터칭 기법 연구)

  • Kwon, Hyun-Ah
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.6
    • /
    • pp.932-944
    • /
    • 2006
  • With supplied computers and the development of information and communication thropugh the Internet, the space of personal home pages in potal sites has been filled with photos taken by digital cameras, and 'the introduction of privacy' done in the personal home pages has become a general trend in society. As the use of Photoshop, available to edit and modify digital photos, in this social atmosphere, has grown general, they have shown their interest in the retouching technique of Photoshop. Computer graphics, marked based on the treatment of a variety of information into pictures or a technology to mark it, recently various application methods have been found in make-up. Especially, Adobe Photoshop, used to edit and modify images, is a sofetware program proper to perform beauty make-up in correcting and creating images in an effective way. The purpose of this study is to express each factor in Adobe Photoshop CS2 about the beauty make-up. As a result, I can say, the process that digital image is retouched by Adobe Photoshop CS is similar work to beauty make-up. The process of Photoshop retouching can be used as the materials for educating of make-up and as the materials for presentation of beauty make-up trend. And also we can serve the simulation to the customer before real make-up. Therefore, this study is for the effective performance of diverse beauty makeup integrating retouch technique with Photoshop CS.

  • PDF

An Automatic Weight Measurement of Rope Using Computer Vision

  • Joo, Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.141-146
    • /
    • 1998
  • Recently, the computer vision such as part measurement, and product inspection is very popular to achieve the factory automation since the labor cost is dramatically increasing. In this paper, the diameter and the length of rope are measured by CCD camera which is orthogonally mounted on the ceiling. Two parameters which are the diameter and the length of rope are used to measure the weight of rope. If the weight of rope is reached to predetermined weight, the information is transmitted to PLC(programmable logic control) to cut the rope on the wheel. The cutting machine cuts the rope according to the information obtained from the CCD camera. To measure the diameter and length of rope on real time, the searching space for image segmentation is restricted the predetermined area according to the camera calibration position. Finally, to estimate the weight of rope, the knowledge base system which depends on the diameter, the length of rope, and weight relation between these information are constructed according to diameters of rope. This method contributes to achieve the factory automation, and reduce the production cost since the operators are unnecessary to measure the weight of rope by try-and-error method.

  • PDF

Stagewise Weak Orthogonal Matching Pursuit Algorithm Based on Adaptive Weak Threshold and Arithmetic Mean

  • Zhao, Liquan;Ma, Ke
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1343-1358
    • /
    • 2020
  • In the stagewise arithmetic orthogonal matching pursuit algorithm, the weak threshold used in sparsity estimation is determined via maximum iterations. Different maximum iterations correspond to different thresholds and affect the performance of the algorithm. To solve this problem, we propose an improved variable weak threshold based on the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the residual error value to control the weak threshold. When the residual value decreases, the threshold value continuously increases, so that the atoms contained in the atomic set are closer to the real sparsity value, making it possible to improve the reconstruction accuracy. In addition, we improved the generalized Jaccard coefficient in order to replace the inner product method that is used in the stagewise arithmetic orthogonal matching pursuit algorithm. Our proposed algorithm uses the covariance to replace the joint expectation for two variables based on the generalized Jaccard coefficient. The improved generalized Jaccard coefficient can be used to generate a more accurate calculation of the correlation between the measurement matrixes. In addition, the residual is more accurate, which can reduce the possibility of selecting the wrong atoms. We demonstrate using simulations that the proposed algorithm produces a better reconstruction result in the reconstruction of a one-dimensional signal and two-dimensional image signal.