• 제목/요약/키워드: Real Number Optimization

검색결과 205건 처리시간 0.03초

75W급 LED 가로등 모듈의 방열판 최적화와 열특성 분석 (Optimization of Heatsink and Analysis of Thermal Property in 75W LED Module for Street Lighting)

  • 이승민;이세일;양종경;이종찬;박대희
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.609-613
    • /
    • 2010
  • In this paper, we optimized and simulated the heatsink of 75W LED module for street lighting and evaluated the optical properties with the manufactured heatsink. the structure of LED package make simple as chip and heatslug and thermal flow is analyzed by using the FEM(Finite Element Method) with CFdesign V10. Also, we measured the temperature of heatsink and evaluated the optical properties with infrared thermal image camera and integrated sphere system for luminous flux in $1\;[m^3]$ box. As results, Heatsink optimized in 3 mm pin thickness, 6 mm base thickness and 16 number of pin count by using Heatsink-designer and got the results which is the temperature of $47.37\;[^{\circ}C]$ and thermal resistance of $0.48407\;[W/^{\circ}C]$. In thermal flow simulation, the temperature of heatsink decreased from $51.54\;[^{\circ}C]$ to $51.51\;[^{\circ}C]$ and the temperature of heatsink by the time in real measurement decreased from $47.03\;[^{\circ}C]$ to $46.87\;[^{\circ}C]$. Moreover, we improve 0.68 % in the decreased ratio of the luminous flux.

실 배전계통 자동화를 위한 개선된 고장복구 알고리즘 개발 (Development of Enhanced Real-Time Service Restoration Algorithm for Distribution Automation System)

  • 오화진;문경준;김형수;서정일;황기현;박준호;임성일;하복남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.159-161
    • /
    • 2000
  • This paper presents a GA for service restoration in electric power distribution systems. The aim of the service restoration is to restore service with maximizing the amount of total load restored while minimizing the number of required switch operation when a fault or overload occurs in distribution system. This paper develops GA for service restoration problem with constrained multi-objective optimization problem. The results show the effectiveness of the proposed method for solving the problem.

  • PDF

ATM 교환기의 위치 선정 문제에 관한 연구 (Algorithm for the ATM Switching Node Location Problem)

  • 김덕성;이경식;박성수;박경철
    • 한국경영과학회지
    • /
    • 제24권3호
    • /
    • pp.93-107
    • /
    • 1999
  • We consider the development of an integer programming model and algorithm for the ATM switching node location problem. There are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. Each customer needs to be connected to one or more hub facilities via remote facilities, where the hub(remote) facilities need to be installed at the same candidate installation site of hub(remote) facility. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities, We need to determine the locations to place facilities, the number of facilities for each selected location, the set of customers who are connected to each installed hub facilities via installed remote facilities with minimum costs, while satisfying demand requirements of each customer. We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we develop a branch-and-cut algorithm with path variables. In the algorithm, we consider the integer knapsack polytope and derive valid inequalities. Computational experiments show that the algorithm works well in the real world situation. The results of this research can be used to develop optimization algorithms to solve capacitated facility location problems.

  • PDF

인공신경망을 이용한 로버스트설계에 관한 연구 (Robust Parameter Design Based on Back Propagation Neural Network)

  • ;김영진
    • 경영과학
    • /
    • 제29권3호
    • /
    • pp.81-89
    • /
    • 2012
  • Since introduced by Vining and Myers in 1990, the concept of dual response approach based on response surface methodology has widely been investigated and adopted for the purpose of robust design. Separately estimating mean and variance responses, dual response approach may take advantages of optimization modeling for finding optimum settings of input factors. Explicitly assuming functional relationship between responses and input factors, however, it may not work well enough especially when the behavior of responses are poorly represented. A sufficient number of experimentations are required to improve the precision of estimations. This study proposes an alternative to dual response approach in which additional experiments are not required. An artificial neural network has been applied to model relationships between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Training, validating, and testing a neural network with empirical process data, an artificial data based on the neural network may be generated and used to estimate response functions without performing real experimentations. A drug formulation example from pharmaceutical industry has been investigated to demonstrate the procedures and applicability of the proposed approach.

Self Organization of Sensor Networks for Energy-Efficient Border Coverage

  • Watfa, Mohamed K.;Commuri, Sesh
    • Journal of Communications and Networks
    • /
    • 제11권1호
    • /
    • pp.57-71
    • /
    • 2009
  • Networking together hundreds or thousands of cheap sensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. As sensor nodes are typically battery operated, it is important to efficiently use the limited energy of the nodes to extend the lifetime of the wireless sensor network (WSN). One of the fundamental issues in WSNs is the coverage problem. In this paper, the border coverage problem in WSNs is rigorously analyzed. Most existing results related to the coverage problem in wireless sensor networks focused on planar networks; however, three dimensional (3D) modeling of the sensor network would reflect more accurately real-life situations. Unlike previous works in this area, we provide distributed algorithms that allow the selection and activation of an optimal border cover for both 2D and 3D regions of interest. We also provide self-healing algorithms as an optimization to our border coverage algorithms which allow the sensor network to adaptively reconfigure and repair itself in order to improve its own performance. Border coverage is crucial for optimizing sensor placement for intrusion detection and a number of other practical applications.

초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용 (Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System)

  • 남윤의;마사토 이노우에;하루오 이시가와
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

Parallel Implementation of the Recursive Least Square for Hyperspectral Image Compression on GPUs

  • Li, Changguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3543-3557
    • /
    • 2017
  • Compression is a very important technique for remotely sensed hyperspectral images. The lossless compression based on the recursive least square (RLS), which eliminates hyperspectral images' redundancy using both spatial and spectral correlations, is an extremely powerful tool for this purpose, but the relatively high computational complexity limits its application to time-critical scenarios. In order to improve the computational efficiency of the algorithm, we optimize its serial version and develop a new parallel implementation on graphics processing units (GPUs). Namely, an optimized recursive least square based on optimal number of prediction bands is introduced firstly. Then we use this approach as a case study to illustrate the advantages and potential challenges of applying GPU parallel optimization principles to the considered problem. The proposed parallel method properly exploits the low-level architecture of GPUs and has been carried out using the compute unified device architecture (CUDA). The GPU parallel implementation is compared with the serial implementation on CPU. Experimental results indicate remarkable acceleration factors and real-time performance, while retaining exactly the same bit rate with regard to the serial version of the compressor.

측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건 (Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy)

  • 류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Hop 제약조건이 고려된 최적화 웹정보검색 (Optimized Structures with Hop Constraints for Web Information Retrieval)

  • 이우기;김기백;이화기
    • 한국경영과학회지
    • /
    • 제33권4호
    • /
    • pp.63-82
    • /
    • 2008
  • The explosively growing attractiveness of the Web is commencing significant demands for a structuring analysis on various web objects. The larger the substantial number of web objects are available, the more difficult for the clients(i.e. common web users and web robots) and the servers(i.e. Web search engine) to retrieve what they really want. We have in mind focusing on the structure of web objects by introducing optimization models for more convenient and effective information retrieval. For this purpose, we represent web objects and hyperlinks as a directed graph from which the optimal structures are derived in terms of rooted directed spanning trees and Top-k trees. Computational experiments are executed for synthetic data as well as for real web sites' domains so that the Lagrangian Relaxation approaches have exploited the Top-k trees and Hop constraint resolutions. In the experiments, our methods outperformed the conventional approaches so that the complex web graph can successfully be converted into optimal-structured ones within a reasonable amount of computation time.