• Title/Summary/Keyword: Real MAC

Search Result 226, Processing Time 0.028 seconds

Time Utility and Channel State based Wireless Downlink Packet Scheduling Algorithm for OFDMA System (OFDMA 무선 시스템에서의 시간-효용과 채널 상태 기반의 하향 링크 패킷 스케줄링)

  • Ryu, Seung-Wan;Seo, Hyun-Hwa;Chung, Soo-Jung;Lim, Soon-Yong;Park, Sei-Kwon
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.111-121
    • /
    • 2004
  • In this paper, we propose an urgency and efficiency based wireless packet scheduling (UEPS) algorithm that is able to schedule real time (RT) and non-real time (NRT) traffics at the same time. The proposed UEPS algorithm is designed to support wireless downlink packet scheduling in the OFDMA system which is a strong candidate wireless system for the next generation mobile communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average one as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics with satisfying QoS requirements of RT traffics. The simulation study shows that the proposed UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF) while satisfying QoS requirements of RT traffics such as the average delay and the packet loss rate under various traffic loads.

The Implementation of Back Propagation Neural Network using the Residue Number System (잉여수계를 이용한 역전파 신경회로망 구현)

  • 홍봉화;이호선
    • The Journal of Information Technology
    • /
    • v.2 no.2
    • /
    • pp.145-161
    • /
    • 1999
  • This paper proposes a high speed back propagation neural networks which uses the residue number system. making the high speed operation possible without carry propagation Consisting of MAC(Multiplication and Accumulation) operator unit using Residue number system and sigmoid function operator unit using Mixed Residue Conversion is designed, The Designed circuits are descripted by VHDL and synthesized by Compass tools. Result of simulations shows that critical path delay time is about 19nsec and the size can be reduced to 40% compared to the neural networks implemented by the real number operation unit. The proposed design circuits can be implemented in parallel distributed processing system with desired real time processing.

  • PDF

Design of a NeuroFuzzy Controller for the Integrated System of Voice and Data Over Wireless Medium Access Control Protocol (무선 매체 접근 제어 프로토콜 상에서의 음성/데이타 통합 시스템을 위한 뉴로 퍼지 제어기 설계)

  • Choi, Won-Seock;Kim, Eung-Ju;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1990-1992
    • /
    • 2001
  • In this paper, a NeuroFuzzy controller (NFC) with enhanced packet reservation multiple access (PRMA) protocol for QoS-guaranteed multimedia communication systems is proposed. The enhanced PRMA protocol adopts mini-slot technique for reducing contention cost, and these minislot are futher partitioned into multiple MAC regions for access requests coming from users with their respective QoS (quality-of-service) requirements. And NFC is designed to properly determine the MAC regions and access probability for enhancing the PRMA efficiency under QoS constraint. It mainly contains voice traffic estimator including the slot information estimator with recurrent neural networks (RNNs) using real-time recurrent learning (RTRL), and fuzzy logic controller with Mandani- and Sugeno-type of fuzzy rules. Simulation results show that the enhanced PRMA protocol with NFC can guarantee QoS requirements for all traffic loads and further achieves higher system utilization and less non real-time packet delay, compared to previously studied PRMA, IPRMA, SIR, HAR, and F2RAC.

  • PDF

Convex hulls and extreme points of families of symmetric univalent functions

  • Hwang, J.S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Earlier in 1935[12], M. S. Robertson introduced the class of quadrant preserving functions. More precisely, let Q be the class of all functions f(z) analytic in the unit disk $D = {z : $\mid$z$\mid$ < 1}$ such that f(0) = 0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in the j-th quadrant of D, j = 1,2,3,4. This class Q contains the subclass of normalized, odd univalent functions which have real coefficients. On the other hand, this class Q is contained in the class T of odd typically real functions which was introduced by W. Rogosinski [13]. Clearly, if $f \in Q$, then f(z) is real when z is real and therefore the coefficients of f are all real. Recently, it was observed by Y. Abu-Muhanna and T. H. MacGregor [1] that any function $f \in Q$ is odd. Instead of functions "preserving quadrants", the authors [1] have introduced the notion of "preserving sectors".

  • PDF

Design of the Digital Neuron Processor (디지털 뉴런프로세서의 설계에 관한 연구)

  • Hong, Bong-Wha;Lee, Ho-Sun;Park, Wha-Se
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.12-22
    • /
    • 2007
  • In this paper, we designed of the high speed digital neuron processor in order to digital neural networks. we designed of the MAC(Multiplier and Accumulator) operation unit used residue number system without carry propagation for the high speed operation. and we implemented sigmoid active function which make it difficult to design neuron processor. The Designed circuits are descripted by VHDL and synthesized by Compass tools. we designed of MAC operation unit and sigmoid processing unit are proved that it could run time 19.6 nsec on the simulation and decreased to hardware size about 50%, each order. Designed digital neuron processor can be implementation in parallel distributed processing system with desired real time processing, In this paper.

Throughput Analysis Based on Collision Probability in 802.11 Networks (802.11 네트워크의 충돌확률 기반 성능 분석)

  • Jin, Hyun-Joon;Song, Myong-Lyol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • IEEE 802.11 Wireless LAN Medium Access Control(MAC) supports two transmission methods, a DCF basic and a RTS/CTS in contention-based access. Even though the RTS/CTS method has been optionally introduced to solve the hidden terminal problem, it is able to produce better performance in some network environments than the basic transmission method. In this paper, the collision probability of wireless channel is mathematically analyzed and applied to measure network throughput using real transmission parameters so that a reference value between throughputs of two methods is obtained. We also confirmed that control signal rates affect overall network throughput and evaluated network throughputs considering collision probability, number of stations, and contention window size of Backoff between two methods respectively.

Queuing Analysis of IEEE 802.15.4 GTS Scheme for Bursty Traffic (Bursty Traffic을 위한 IEEE 802.15.4 GTS 기법의 대기 해석)

  • Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2010
  • The IEEE 802.15.4 and IEEE 802.15.7 standard are the typical of low rate wireless and Visible Light Wireless personal area networks. Its Medium Access Control protocol can support the QoS traffic flows for real-time application through guaranteed time slots (GTS) in beacon mode. However, how to achieve a best allocation scheme is not solved clearly. The current analytical models of IEEE 802.15.4 MAC reported in the literature have been mainly developed under the assumption of saturated traffic or non-bursty unsaturated traffic conditions. These assumptions don't capture the characteristics of bursty multimedia traffic. In this paper, we propose a new analytical model for GTS allocation with burst Markov modulated ON-OFF arrival traffic.

Wireless LAN with Medical-Grade QoS for E-Healthcare

  • Lee, Hyung-Ho;Park, Kyung-Joon;Ko, Young-Bae;Choi, Chong-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 2011
  • In this paper, we study the problem of how to design a medical-grade wireless local area network (WLAN) for healthcare facilities. First, unlike the IEEE 802.11e MAC, which categorizes traffic primarily by their delay constraints, we prioritize medical applications according to their medical urgency. Second, we propose a mechanism that can guarantee absolute priority to each traffic category, which is critical for medical-grade quality of service (QoS), while the conventional 802.11e MAC only provides relative priority to each traffic category. Based on absolute priority, we focus on the performance of real-time patient monitoring applications, and derive the optimal contention window size that can significantly improve the throughput performance. Finally, for proper performance evaluation from a medical viewpoint, we introduce the weighted diagnostic distortion (WDD) as a medical QoS metric to effectively measure the medical diagnosability by extracting the main diagnostic features of medical signal. Our simulation result shows that the proposed mechanism, together with medical categorization using absolute priority, can significantly improve the medical-grade QoS performance over the conventional IEEE 802.11e MAC.

Available Bandwidth Measurement Method Considering Idle Period and Transmission Overheads in IEEE 802.11b DCF Wireless LANs (IEEE 802.11b DCF 무선랜 환경에서 휴지 기간과 전송 오버헤드를 고려한 가용대역폭 측정 방법)

  • Koo, Hye-Lim;Ha, Sang-Yong;Ryu, Ki-Yeol;Roh, Byeong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.780-788
    • /
    • 2011
  • The lack of QoS (Quality of Service) support functionalities in IEEE 802.11 DCF mode makes it difficult to provide real-time multimedia services in WLANs. In this paper, we propose an effective available bandwidth measurement method in IEEE 802.11b DCF environments. The proposed method measures the total channel idle time and the collision probability during each measurement period. Then, the available bandwidth is calculated by considering those measured information and the transmission overheads at MAC and PRY layers. The performances of the proposed method are evaluated using OPNET simulator. The simulation results show that the proposed method provides more exact results than existing comparable schemes.

A Node Activation Protocol using Priority-Adaptive Channel Access Scheduling for Wireless Sensor Networks (무선 센서 네트워크를 위한 적응적 우선순위 채널 접근 스케쥴링을 이용한 노드 활성화 프로토콜)

  • Nam, Jaehyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.469-472
    • /
    • 2014
  • S-MAC is hybrids of CSMA and TDMA approaches that use local sleep-wake schedules to coordinate packet exchanges and reduce idle listening. In this method, all the nodes are considered with equal priority which may lead to increased delay during heavy traffic. The method introduced in this paper provides high throughput and small end-to-end delay suitable for applications such as real-time voice streaming and its functionality is independent of underlying synchronization protocol. The novel idea behind our scheme is that it uses the priority concept with (m,k)-firm scheduling in order to achieve its objectives. The performance of our scheme is obtained through simulations for various packet sizes, traffic loads which show significant improvements in packet delivery ratio, and delay compared to existing protocols.

  • PDF