• Title/Summary/Keyword: Reader collision

Search Result 130, Processing Time 0.035 seconds

A Mechanism for Dynamic Allocation of Frame Size in RFID System

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.364-369
    • /
    • 2008
  • The FSA algorithm for identifying multiple tags in RFID systems is based on the slotted ALOHA scheme with a fixed frame size. The performance of FSA algorithm is dependent on the frame size and the number of tags in the reader's identification range. Therefore, this paper proposes a new ODFSA. The proposed ODFSA algorithm dynamically allocates the optimal frame size at every frame based on the number of tags in the reader's identification range. According to the simulation results, the system efficiency of the proposed algorithm should be maintained optimally. Also, the proposed algorithm always obtained the minimum tag identification delay.

A Scheme for Estimating Number of Tags in FSA-based RFID Systems

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.164-169
    • /
    • 2009
  • An RFID system consists of radio frequency tags attached to objects that need to be identified and one or more electromagnetic readers. Unlike the traditional bar code system, the great benefit of RFID technology is that it allows information to be read without requiring contact between the tag and the reader. For this contact-less feature, RFID technology in the near future will become an attractive alternative to bar code in many application fields. In almost all the 13.56MHz RFID systems, FSA (Framed Slot ALOHA) algorithm is used for identifying multiple tags in the reader's identification range. In FSA algorithm, the tag identification time and system efficiency depend mainly on the number of tags and frame size. In this paper, we propose a tag number estimation scheme and a dynamic frame size allocation scheme based on the estimated number of tags.

Adaptive reader network for solving the reader collision problem (RFID 리더 충돌 중재를 위한 적응형 리더 네트워크)

  • Lim Sangsoon;Han Hyuho;Kim Yoonkuk;An Sunshin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.523-525
    • /
    • 2005
  • RFID(Radio Frequency IDentification) 기술은 RF 신호를 이용하여 특정 물체에 부착되어진 태그를 일정 범위 이내에서 식별할 수 있는 자동인식기술이다. RFID 시스템 상용화 이전에 해결해야 할 중요한 문제 중 하나는 다수의 리더들 간의 충돌 문제이다. 이러한 문제점을 해결하기 위한 리더 충돌 방지 알고리즘들은 RFID 시스템의 효율성과 직접적인 연관이 있으며 아직 연구가 미비한 상태이다. 기존의 리더 충돌 방지 알고리즘 중 Colorwave 방식은 구현이 간단한 장점은 있으나, 시간 이용 효율 저하 및 태그 오동작이 발생하게 된다. 또한 경쟁 기반의 슬롯 할당 방식으로 인한 문제점을 가지고 있다. 본 논문에서는 RFID 리더 네트워크에 충돌 중재를 위한 매니저를 두어 리더 간의 충돌 발생을 방지함과 동시에 위의 문제점을 해결 할 수 있는 적응형 리더 네트워크 구조를 제시한다.

  • PDF

Hybrid anti-collision method for RFID System with the consideration of the average throughput (평균 처리율을 고려한 RFID 시스템의 하이브리드 충돌 방지 기법)

  • Choi, Sung-Yun;Lee, Je-Ho;Kim, Sung-Hyun;Tchah, Kyun-Hyon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.24-32
    • /
    • 2010
  • Slotted-ALOHA and Binary-tree method are researched for the anti-collision for RFID system. However, it is required of the rapid recognition time for all tags and the reduction of the system complexity. In this paper. the hybrid anti-collision method is proposed to solve the problems. The RFID reader with the hybrid anti-collision method groups the tags with the number which makes the maximum system throughput, then it reads each group by slotted-ALOHA method. By the computer simulation results, it is found that the hybrid method improves the tag identification time and the system throughput together with the comparison to other anti-collision methods. Therefore, the proposed hybrid anti-collision method will enhance the RFID system performance.

Improvements of the Anti-collision Algorithms for Multi Tag Interrogation in RFID System (RFID 시스템에서 다중 태그 인식을 위한 충돌회피 알고리즘의 성능 개선에 관한 연구)

  • NamGung, Ho-Young;Min, Byoung-Taek;Jeon, Jun-Soo;Kim, Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1169-1172
    • /
    • 2005
  • In this paper, we propose an improved anti-collision algorithm for multi tag interrogation in ubiquitous sensor network(USN) and show the result of simulation for multi tag interrogation in RFID systems. We have analyzed an EPC(Electronic Product Code) protocol which specifies the physical and logical requirements for a passive-backscatter Reader-Talk-First(RTF) RFID(Radio Frequency Identification) system operating in the $860MHz{\sim}960MHz$ frequency range. We have also designed and implemented the simulator of the RFID system based on the EPC protocol. Finally, we find that proposed algorithm works better than an existing algorithm.

  • PDF

Performance Analysis of RFID Interference Suppression System Based on the Gold Code (골드 코드 기반의 RFID 간섭제거 시스템 성능분석)

  • khadka, Grishma;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1491-1497
    • /
    • 2013
  • Radio frequency identification (RFID) is an important and essential components of ubiquitous computing, with the development of wireless communication technologies and mobile computing environment. Recently, RFID becomes the mainstream application that helps fast handling and uniquely identifying the physical objects. It utilizes the electromagnetic energy for data transmission from a tag to a reader in the presence of arbitrary interference and noise. In order to employ the portable mobile RFID reader, a tag-collision problem between two or more adjacent tags should be considered. In this paper, we present the operation of RFID system in which numerous tags are present in the interrogation zone of a single reader at the same time. Since there may exist a number of tagged objects in the narrow area, multiple RFID tags may interfere each other, caused to degrade the data reliability and efficiency of the RFID system. In order to suppress interference signals from multiple neighboring tags, we present an application of Gold code for RFID communication system, which uses spread spectrum technique. In this RFID system, data bits are spreaded in each tags with the unique Gold code and the spreaded data bits are despreaded in the reader with the same Gold code. The performance analysis of the considered RFID anti-collision system is illustrated via computer simulation examples.

Enhanced Query Tree Based Anti-Collision Algorithm for Multiple Tag Identification (다중 태그 식별을 위한 개선된 질의 트리 충돌방지 알고리즘)

  • Lim In-Taek
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.307-314
    • /
    • 2006
  • This paper proposes a QT_rev algorithm for identifying multiple tags. The proposed QT_rev algorithm is based on the query tree algorithm. In the algorithm, the tag will send all the bits of their identification codes when the query string matches the first bits of their identification codes. On the other hand, in the QT_rev algorithm, the tag will send the remaining bits of their identification codes. After the leader receives all the responses of the tags, it knows which bit is collided. Therefore, if the collision occurs in the last bit, the reader can identify two tags simultaneously without further query. According to the simulation results, the QT_rev algorithm outperforms the QT algorithm in terms of the number of queries and the number of response bits.

  • PDF

Anti-Collision Protocol with Stop Signal in RFID Systems (RFID 시스템에서 중지 신호를 이용한 충돌방지 프로토콜)

  • Lim In-Taek;Choi Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.638-644
    • /
    • 2006
  • In this paper, a QT_ss protocol is proposed for identifying all the tags within the identification range. The proposed QT_ss protocol revises the QT protocol, which has a memoryless property. In the QT_ss protocol, the tag will send all the bits of their identification codes when the query string matches the first bits of their identification codes. While the tags are sending their identification codes, if the reader detects a collision bit, it will send a signal to the tags to stop sending. According to the simulation results, the QT_ss protocol outperforms the QT protocol in terms of the number of response bits.

An Efficient Tag Identification Algorithm using Bit Pattern Prediction Method (비트 패턴 예측 기법을 이용한 효율적인 태그 인식 알고리즘)

  • Kim, Young-Back;Kim, Sung-Soo;Chung, Kyung-Ho;Kwon, Kee-Koo;Ahn, Kwang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.285-293
    • /
    • 2013
  • The procedure of the arbitration which is the tag collision is essential because the multiple tags response simultaneously in the same frequency to the request of the Reader. This procedure is known as Anti-collision and it is a key technology in the RFID system. In this paper, we propose the Bit Pattern Prediction Algorithm(BPPA) for the efficient identification of the multiple tags. The BPPA is based on the tree algorithm using the time slot and identify the tag quickly and efficiently using accurate bit pattern prediction method. Through mathematical performance analysis, We proved that the BPPA is an O(n) algorithm by analyzing the worst-case time complexity and the BPPA's performance is improved compared to existing algorithms. Through MATLAB simulation experiments, we verified that the BPPA require the average 1.2 times query per one tag identification and the BPPA ensure stable performance regardless of the number of the tags.

The Design of RFID System using Group Separation Algorithm (Group Separation 알고리듬을 적용한 RFID system의 구현)

  • Ko, Young-Eun;Lee, Suk-Hui;Oh, Kyoung-Wook;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.25-32
    • /
    • 2007
  • In this paper, we propose the Group Separation Algorithm for RFID Tag Anti-Collision. We study the RFID Tag anti-collision technique of ALOHA and the anti-collision algorithm of binary search. The existing technique is several problems; the transmitted data rate included of data, the recognition time and energy efficiency. For distinction of all tags, the Group Separation algorithm identify each Tag_ID bit#s sum of bit #1#. In other words, Group Separation algorithm had standard of selection by collision table, the algorithm can reduce unnecessary number of search even than the exisiting algorithm. The Group Separation algorithm had performance test that criterions were reader#s number of repetition and number of transmitted bits for understanding tag. We showed the good performance of Group Separation algorithm better than exisiting algorithm.