• Title/Summary/Keyword: Reactor coolant system

Search Result 368, Processing Time 0.02 seconds

Thermal Analysis of a Canned Induction Motor for Main Coolant Pump in System-Integrated Modular Advanced Reactor

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.32-36
    • /
    • 2003
  • The three-phase canned induction motor, which consists of a stator and rotor with a seal can, is used for the main coolant pump (MCP) of the System-integrated Modular Advanced Reactor (SMART). The thermal characteristics of the can must be estimated exactly, since the eddy current loss of the can is a dominant parameter in design. Besides the insulation of the motor winding is compared of Teflon, glass fiber, and air, so it is not an easy task to analyze. A FEM thermal analysis was per-formed by using the thermal properties of complex insulation which were obtained by comparing the results of finite element thermal analysis and those of the experiment. As a result, it is shown that the characteristics of prototype canned induction motor have a good agreement with the results of FEM.

Design and simulation of a blanket module with high efficiency cooling system of tokamak focused on DEMO reactor

  • Sadeghi, H.;Amrollahi, R.;Zare, M.;Fazelpour, S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.323-327
    • /
    • 2020
  • In this study, the neutronic calculation to obtain tritium breeding ratio (TBR) in a deuterium-tritium (D-T) fusion power reactor using Monte Carlo MCNPX is done. In addition, by using COMSOL software, an efficient cooling system is designed. In the proposed design, it is adequate to enrich up to 40% 6Li. Total tritium breeding ratio of 1.12 is achieved. The temperature of helium as coolant gas never exceed 687℃. As regards the tolerable temperature of beryllium (650℃), the design of blanket module is done in the way that beryllium temperature never exceed 600℃. The main feature of this design indicates the temperature of helium coolant is higher than other proposed models for blanket module, therefore power of electricity generation will increase.

A Preliminary Study for the Implementation of General Accident Management Strategies

  • Yang, Soo-Hyung;Kim, Soo-Hyung;Jeong, Young-Hoon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.695-700
    • /
    • 1997
  • To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of .each strategy are also investigated.

  • PDF

A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+ (APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석)

  • Moon, Horim;Kim, Han Gon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

Flow Characteristics of a Primary Cooling System in 5 MW Research Reactor (5MW 연구용 원자로의 1차 냉각 계통 유동 특성)

  • Park, Young-Chul;Lee, Young-Sub
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.5-10
    • /
    • 2010
  • 5MW, open pool type research reactor, is commonly used to education and experimental purpose. It is necessary to prepare a standardization of system designs for considering a demand. HANARO has prepared the standardization of 5MW research reactor system designs based on the design, installation, commissioning and operating experiences of HANARO. For maintaining an open pool type reactor safety, a primary cooling system (after below, PCS) should remove the heat generated by the reactor under a reactor normal operation condition and a reactor shutdown condition. For removing the heat generated by the reactor, the PCS should maintain a required coolant flow rate. For a verification of the required flow rate, a flow network analysis of the PCS was carried under a normal operating condition. Based on the flow network analysis result, this paper describes the PCS flow characteristics of a 5MW open pool type research reactor. Through the result, it was confirmed that the PCS met design requirements including design flow rate without cavitation.

Flow Characteristics Evaluation in Reactor Coolant System for Full System Decontamination of Kori-1 Nuclear Power Plant (고리1호기 계통제염을 위한 원자로냉각재내 유동 특성 평가)

  • Kim, Hak Soo;Kim, Cho-Rong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.389-396
    • /
    • 2018
  • The Kori-1 Nuclear Power Plant (NPP), WH 2-Loop Pressurized Water Reactor (PWR) operated for approximately 40 years in Korea, was permanently ceased on June 18, 2017. To reduce worker exposure to radiation by reducing the dose rate in the system before starting main decommissioning activities, the permanently ceased Kori-1 NPP will be subjected to full system decontamination. Generally, the range of system decontamination includes Reactor Pressure Vessels (RPV), Pressurizer (PZR), Steam Generators (SG), Chemical & Volume Control System (CVCS), Residual Heat Removal System (RHRS), and Reactor Coolant System (RCS) piping. In order to decontaminate these systems and equipment in an effective manner, it is necessary to evaluate the influence of the flow characteristics in the RCS during the decontamination period. There are various methods of providing circulating flow rate to the system decontamination. In this paper, the flow characteristics in Kori-1 NPP reactor coolant according to RHR pump operation were evaluated. The evaluation results showed that system decontamination using an RHR pump was not effective at decontamination due first to impurities deposited in piping and equipment, and second to the extreme flow unbalance in the RCS caused deposition of impurities.