• Title/Summary/Keyword: Reactor Protection System

Search Result 158, Processing Time 0.034 seconds

A Safety Assessment Methodology for a Digital Reactor Protection System

  • Lee Dong-Young;Choi Jong-Gyun;Lyou Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 2006
  • The main function of a reactor protection system is to maintain the reactor core integrity and the reactor coolant system pressure boundary. Generally, the reactor protection system adopts the 2-out-of-m redundant architecture to assure a reliable operation. This paper describes the safety assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures such as the random hardware failures, common cause failures, operator errors, and the fault tolerance mechanisms implemented in the reactor protection system. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system, and applied to the reactor protection system being developed in Korea to identify design weak points from a safety point of view.

An Unavailability Evaluation for a Digital Reactor Protection System (디지털 원자로보호계통 불가용도 평가)

  • Lee, Dong-Yeong;Choe, Jong-Gyun;Kim, Ji-Yeong;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.81-83
    • /
    • 2005
  • The Reactor Protection System (RPS) is a very important system in a nuclear power plant because the system shuts down the reactor to maintain the reactor core integrity and the reactor coolant system pressure boundary if the plant conditions approach the specified safety limits. This paper describes the unavailability assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system. and applied to the reactor protection system being developed in Korea.

  • PDF

A Study on Chaining Threat Analysis of Cybersecurity against Reactor Protection Systems (원자로보호계통 사이버보안 연계 위협 분석 연구)

  • Jung, Sungmin;Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The application of digital technology to instrumentation and control systems in nuclear power plants has overcome many shortcomings of analog technology, but the threat of cybersecurity has increased. Along with other systems, the reactor protection system also uses digital-based equipment, so responding to cybersecurity threats is essential. We generally determine cybersecurity threats according to the role and function of the system. However, since the instrumentation and control system has various systems linked to each other, it is essential to analyze cybersecurity threats together between the connected systems. In this paper, we analyze the cybersecurity threat of the reactor protection system with the associated facilities. To this end, we quantitatively identified the risk of the reactor protection system by considering safety functions, a communication type, the use of analog or digital-based equipment of the associated systems, and the software vulnerability of the configuration module of the reactor protection system.

Software Verification & Validation for Digital Reactor Protection System (디지털 원자로 보호계통의 소프트웨어 확인 및 검증)

  • Park, Gee-Yong;Kwon, Kee-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.185-187
    • /
    • 2005
  • The reactor protection system is the most important function for the safe operation of nuclear powerplants (NPPs) in that such system protects a nuclear reactor tore whose damage can cause an enormous disaster to the nuclear facility and the public. A digital reactor protection system (DRPS) is being developed in KAERI for use in the newly-constructed NPPs and also for replacing the existing analog-type reactor Protection systems. In this paper, an software verification and validation (V&V) activities for DRPS, which are independent of the DRPS development processes, are described according to the software development life cycle. The main activities of DRPS V&V processes are the software planning documentations, the verification of software requirements specification (SRS) and software design specification (SDS), the verification of codes, the tests of the integrated software and system. Moreover, the software safety analysis and the software configuration management are involved in the DRPS V&V processes. All of the V&V activities are described, in detail, in this paper.

  • PDF

Safety Assessment for the Design of Digital Reactor Protection System of Nuclear Power Plant (원자력 발전소 디지털 원자로 보호시스템의 설계에 대한 안전성 평가)

  • Kong, Myung-Bock;Lee, Sang-Yong
    • IE interfaces
    • /
    • v.23 no.1
    • /
    • pp.68-77
    • /
    • 2010
  • Digital reactor protection system which consists of many identical modules, is fault- tolerant to provide high safety. The modules themselves including DSP(digital signal processing) card are also fault-tolerant in nature. This paper assesses the safety for being-designed digital reactor protection system of 2-out-of-4 G structure with lockout. Some interesting design alternatives are compared. Fault tree analysis for assessing system safety is performed by Relex software. The selected reactor protection system fully satisfies EPRIURD stipulation of mean failure time of 50 years.

A Case Study of the Commom Cause Failure Analysis of Digital Reactor Protection System (디지털 원자로 보호시스템의 공통원인고장 분석에 관한 사례연구)

  • Kong, Myung-Bock;Lee, Sang-Yong
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.382-392
    • /
    • 2012
  • Reactor protection system to keep nuclear safety and operational economy of plants requires high reliability. Such a high reliability of the system can be achieved through the redundant design of components. However, common cause failures of components reduce the benefits of redundant design. Thus, the common cause failure analysis, to accurately calculate the reliability of the reactor protection system, is carried out using alpha-factor model. Analysis results to 24 operating months are that 1) the system reliability satisfies the reliability goal of EPRI-URD and 2) the common cause failure contributes 90% of the system unreliability. The uncertainty analysis using alpha factor parameters of 0.05 and 0.95 quantile values shows significantly large difference in the system unreliability.

RPS Periodic Testing Method for Reliability and Availability (신뢰성과 유지보수를 위한 원자로보호계통 주기시험 방법 개발)

  • Park, Joo-Hyun;Lee, Dong-Young;Lee, Seong-Jin;Song, Deok-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.84-86
    • /
    • 2005
  • The digital systems such as PLC or DCS have been applied to non-safety systems of nuclear power plants because of many difficulties in using analog systems. Nowadays, digital systems have been applied to safety systems of the plants such as reactor protection system. One of the main advantages of digital systems is applicability of automatic testing methods to the systems. The protection system requires high-reliability and high-availability because it shall minimize the propagation of abnormal or accident conditions of nuclear power plants. The calculation of reliability and availability of systems depends on the maintenance period of the system. In general, the maintenance period of the protection system is one-month in case of the manual test. However, the cycle of test can be shortened in several hours by using automatic periodic testing. The reliability and availability of the system is better when test period is shortened because the reliability and availability is inverse proportion to the test period. In this research, we developed the automatic periodic testing method for KNICS Reactor Protection System, which can test the system automatically without an operator or a tester. The automatic testing contained all functions of reaction protection systems from analog-to-digital conversion function of the bistable Processor to the coincident trip function of the coincident processor. By applying the automatic periodic testing to reaction system, the maintenance cost can be cut down and the reliability can be increased.

  • PDF

A Study on the Reactor Protection System Composed of ASICs

  • Kim, Sung;Kim, Seog-Nam;Han, Sang-Joon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.191-196
    • /
    • 1996
  • The potential value of the Application Specific Integrated Circuits(ASIC's) in safety systems of Nuclear Power Plants(NPP's) is being increasingly recognized because they are essentially hardwired circuitry on a chip, the reliability of the system can be proved more easily than that of software based systems which is difficult in point of software V&V(Verification and Validation). There are two types of ASIC, one is a full customized type, the other is a half customized type. PLD(Programmable Logic Device) used in this paper is a half customized ASIC which is a device consisting of blocks of logic connected with programmable interconnections that are customized in the package by end users. This paper describes the RPS(Reactor Protection System) composed of ASICs which provides emergency shutdown of the reactor to protect the core and the pressure boundary of RCS(Reactor Coolant System) in NPP's. The RPS is largely composed of five logic blocks, each of them was implemented in one PLD, as the followings. A). Bistable Logic B). Matrix Logic C).Initiation Logic D). MMI(Man Machine Interface) Logic E). Test Logic.

  • PDF

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.

Dependability Analysis of Fault Detection Function and Reliability of Reactor Protection System (원자로보호계통의 고장검출기능과 신뢰도의 상관관계 분석)

  • Kim, Ji-Young;Park, Hong-Lae;Lyou, Joon;Lee, Dong-Young;Choi, Jong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.29-32
    • /
    • 2004
  • Reliability is an important issue on the digital reactor protection system. This paper presents a Quantitative reliability evaluation method to find out an improvement effect of availability for the digital control module with a fault detection function. It is a reliability evaluation model which considers only the electronics parts ocurring a spurious reactor trip by the FMEA(Failure Mode Effect Analysis). Applying the previous and present methods to the reactor protection system, the availability factors are evaluated and compared.

  • PDF