• 제목/요약/키워드: Reactor Internal Temperature

검색결과 102건 처리시간 0.026초

전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석 (Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics)

  • 이용규;정익환;나종걸;박성호;;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.818-823
    • /
    • 2015
  • 본 연구에서는 전산유체역학(CFD)을 이용하여 마이크로채널 내부의 Fischer-Tropsch(FT) 반응을 모사하였고, 나아가 반응채널의 너비와 높이, 냉각채널과의 거리 그리고 채널 사이 간격을 변수로 두고 채널 내부 온도에 대해 민감도 분석을 수행하였다. 마이크로채널 반응기는 채널 간의 열교환을 고려하기 위한 5개의 반응채널과 냉각채널을 대신한 냉각면으로 이루어져 있으며 채널의 높이와 너비를 포함한 변수들의 길이는 0.5 mm ~ 5.0 mm 범위에서 설정하였다. 반응물로는 $H_2$와 CO의 혼합기체($H_2/CO$ molar ratio=2)를 사용하였으며 반응기의 운전 조건은 $GHSV=10000h^{-1}$, 압력 20 bar와 온도 483 K($210^{\circ}C$)이다. 민감도 분석의 결과로 반응채널 내부의 최대 온도는 채널의 높이에 비례하며 너비에 대해서는 특정 길이 이상에서 영향을 받지 않는 것을 확인하였으며 이 중에 냉각채널과의 거리와 채널 사이 간격은 채널 내부 온도에 거의 영향을 미치지 않았다. 따라서 채널 레이아웃에서 반응채널의 높이는 짧을수록(약 2 mm 이하), 너비는 길수록(약 4 mm 이상) 열제거뿐만 아니라 생산량 측면에서 이득을 얻을 수 있었다.

혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구 (A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe)

  • 김석범;박종호
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Spectrometry Analysis of Fumes of Mixed Nuclear Fuel (U0.8Pu0.2)O2 Samples Heated up to 2,000℃ and Evaluation of Accidental Irradiation of Living Organisms by Plutonium as the Most Radiotoxic Fission Product of Mixed Nuclear Fuel

  • Kim, Dmitriy;Zhumagulova, Roza;Tazhigulova, Bibinur;Zharaspayeva, Gulzhanar;Azhiyeva, Galiya
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.274-284
    • /
    • 2016
  • Purpose: The purpose of this work is to describe the spectrometric analysis of gaseous cloud formation over reactor mixed uranium-and-plutonium (UP) fuel $(U_{0.8}Pu_{0.2})O_2$ samples heated to a temperature $>2,000^{\circ}C$, and thus forecast and evaluate radiation hazards threatening humans who cope with the consequences of any accident at a fission reactor loaded by UP mixed oxide $(U_{0.8}Pu_{0.2})O_2$, such as a mixture of 80% U and 20% Pu in weight. Materials and methods: The UP nuclear fuel samples were heated up to a temperature of over $2,000^{\circ}C$ in a suitable assembly (apparatus) at out-of-pile experiments' implementation, the experimental in-depth study of metabolism of active materials in living organisms by means of artificial irradiation of pigs by plutonium. Spectrometric measurements were carried out on the different exposed organs and tissues of pigs for the further estimation of human internal exposure by nuclear materials released from the core of a fission reactor fueled with UP mixed oxide. Results: The main results of the research described are the following: (1) following the research on the influence of mixed fuel fission products (radioactive isotopes being formed during reactor operation as a result of nuclear decay of elements included into the fuel composition) on living organisms, the authors determined the quantities of plutonium dioxide ($PuO_2$) that penetrated into blood and lay in the pulmonary region, liver, skeleton and other tissues; and (2) experiments confirmed that the output speed of plutonium out of the basic precipitation locations is very small. On the strength of the experimental evidence, the authors suggest that the biological output of plutonium can be disregarded in the process of evaluation of the internal irradiation doses.

CHARACTERISTICS OF THE PNEUMATIC TRANSFER SYSTEM AND THE IRRADIATION HOLE AT THE HANARO RESEARCH REACTOR

  • Chung, Yong-Sam;Kim, Sun-Ha;Moon, Jong-Hwa;Kim, Hark-Rho;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.585-590
    • /
    • 2006
  • This paper describes the results of an irradiation test and the specifications of the pneumatic transfer system (PTS) in the NAA #3 irradiation hole at the HANARO research reactor, which was reinstalled after some modifications of the operation mode at the end of 2004. The outer and inner diameters of the PE transfer tube are 34.1 and 27.5 mm, respectively. PE rabbit was used for sample irradiation. The $N_2$ gas pressure of the PTS lines was adjusted to 0.75 bar. The average sending time to the reactor was $8.5{\pm}0.3$ s and the average receiving time back to the receiver was $3.2{\pm}0.2$ s. The internal and external temperature of the irradiation tube was measured in a range of 50 to $80^{\circ}C$ for a 40 s to 80 s irradiation time, respectively. The optimum irradiation time was estimated to be less than 80 s. The thermal, epithermal and fast neutron flux at 30 MW thermal power were $1.42{\pm}0.01{\times}10^{14},\;1.51{\pm}0.04{\times}10^{13}$ and $9.48{\pm}0.69{\times}10^{11} n{\cdot}cm^{-2}{\codt}s^{1-}$, respectively. The cadmium ratio was approximately 9.40. The data obtained will be applied to supplement user information and for reactor management.

내부제트 분사를 이용한 새로운 광섬유제조 화학증착 방법에 관한 연구 (An Aerosol CVD Method Using Internal Jet for Optical Fiber Synthesis)

  • 홍춘근;최만수
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.608-613
    • /
    • 2000
  • The present study has proposed a novel aerosol CVD utilizing an internal jet in the conventional MCVD reactor for the purpose of enhancing the deposition efficiency(and rate) and the uniformity of deposited film. The use of impingement of high temperature jet through a thin inner tube ensures the reduction of non-uniform particle deposition zone as well as higher thermophoretic particle deposition. It is shown that significant improvements have been achieved for both aspects of deposition efficiency and uniformity. As jet temperatures increase, the tapered length is reduced and deposition efficiency is significantly increased.

고온, 고압조건에서의 인도네시아 석탄촤의 CO2 가스화 반응 (Reaction Rate Analysis of CO2 Gasification for Indonesian Coal Char at High Temperature and Elevated Pressure)

  • 리산디케빈요하네스;김량균;황찬원;전충환
    • 대한기계학회논문집B
    • /
    • 제38권9호
    • /
    • pp.781-787
    • /
    • 2014
  • PWMR(Pressurized wire mesh heating reactor)는 Intrinsic $CO_2$ 가스화 반응속도 해석에 필요한 활성화에너지와 빈도상수를 도줄하기 위해서 고안되었으며, 고압 및 고온(50atm, 1750K)조건 하에서 실험을 수행하였다. 본 연구에서는 고온조건에서의 실험을 위해 백금(Pt) 메쉬를 가열체로 사용하였고 직류전원공급기를 통해 백금메쉬로 전류를 인가하여 석탄 입자를 가열시킨다. 가열시 정확한 온도제어 및 반응시간 조절을 위해 직류전원공급기는 컴퓨터로 제어된다. 본 연구에서는, 인도네시아 아역청탄인 BERAU 를 사용하였으며 입자크기는 $90-150{\mu}m$, 압력과 온도조건은 각각 1-40atm 및 1373-1673K에서 실험을 진행하였다. 고압에서의 압력의 영향을 구분하기 위해 Internal/external effectiveness factor를 고려하였다. 최종적으로 BERAU 촤의 Intrinsic 가스화 반응속도론 을 $n^{th}$ order 반응식을 통해 도출하였으며 그 값은 203.8kJ/mol 의 값을 가졌다.

고온/고압 조건에서의 석탄 촤 내부 및 외부 가스화 반응효과 (Impact of Internal/External Diffusion on Gasification Reaction Rate Analysis of Coal Char in High Temperatures and Elevated pressures)

  • 김경민;김진호;리산디케빈요하네스;김량균;김규보;전충환
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.23-29
    • /
    • 2016
  • Reactivity of gasification defined by bouardard reaction is critical parameter in efficiency of the gasifier. In this study, char reactivity of the gasification was derived from the experiments using the intrinsic reaction kinetics model. Pressurized wire mesh heating reactor (PWMR) can produce high temperature and high pressure conditions up to 50 atm and 1750 K, respectively and PWMR was designed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. In this study, Kideco and KCH (sub-bituminous Indonesian coal) were pulverized and converted into char. Experiments used the PWMR were conducted and the conditions of the temperature and pressure were 1373~1673 K, 1~40 atm. To distinguish the pressure effect from high pressurized condition, internal and external effectiveness factors were considered. Finally, the intrinsic kinetics of the Kideco and KCH coal char were derived from $n^{th}$ order reaction rate equations.

CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자 (Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts)

  • 임미숙;서숭혁
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석 (Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion)

  • 황찬원;김량균;류광일;오택림;전충환
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.133-140
    • /
    • 2014
  • 본 연구의 목적은 국내 화력발전소에서 사용중인 인도네시아 석탄촤의 연소반응율을 연구하는 것이다. 석탄촤의 반응율은 External, Internal effectiveness factor를 고려하여 입자 내부 및 외부확산을 정량적으로 정리하였으며, Random pore model을 사용하여 탄소변환율에 따른 입자내부비표면적의 변화를 반영하였다. 가열 및 측정이 가능한 WHR(Wire Heating Reactor)를 활용하여 반응시간을 측정함으로써 석탄촤의 반응율을 도출하였고 BET(Brunauer-Emmett-Teller) 및 TGA(Thermo-Gravimetric Analysis) 장비를 활용하여 석탄촤의 물리적인 특성인 내부비표면적과 Random pore model의 구조변수(${\Psi}$)를 측정하였다. 석탄 종에 따른 활성화에너지 및 빈도인자를 도출하기 위해 아역청탄인 BARAMULTI, ENERGYMAN, AGM탄을 사용하였다. 본 연구 결과에서 External, Internal effectiveness factors를 통해 확산에 따른 kinetics를 비교한 결과 외부 확산 보다 내부 확산의 영향이 지배적임을 확인하였다. 최종적으로 내부 및 외부 확산에 대한 영향을 고려한 3종의 석탄촤 Intrinsic kinetics의 활성화에너지는 110~118 kJ/mol의 값을 보였다.