• Title/Summary/Keyword: Reactor Core

Search Result 1,010, Processing Time 0.022 seconds

Risk-Informed Optimization of Operation and Procedures for Korea Research Reactor (리스크정보 최적화를 통한 국내 연구용원자로의 안전성 향상)

  • Lee, Yoon-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.43-53
    • /
    • 2022
  • This paper describes an attempt to improve and optimize the operational safety level of a domestic research reactor by conducting a probabilistic safety assessment (PSA) under full-power operating conditions. The PSA was undertaken to assess the level of safety at an operating research reactor in Korea, to evaluate whether it is probabilistically safe and reliable to operate, and to obtain insights regarding the requisite procedural and design improvements for achieving safer operation. The technical objectives were to use the PSA to identify the accident sequences leading to core damage, and to conduct sensitivity analyses based thereon to derive insights regarding potential design and procedural improvements. Based on the dominant accident sequences identified by the PSA, eight types of sensitivity analysis were performed, and relevant insights for achieving safer operation were derived. When these insights were applied to the reactor design and operating procedure, the risk was found to be reduced by approximately ten times, and the safety was significantly improved. The results demonstrate that the PSA methodology is very effective for improving reactor safety in the full-power operating phase. In particular, it is a highly suitable approach for identifying the deficiencies of a reactor operating at full power, and for improving the reactor safety by overcoming those deficiencies.

Uncertainty quantification based on similarity analysis of reactor physics benchmark experiments for SFR using TRU metallic fuel

  • YuGwon Jo;Jaewoon Yoo;Jong-Hyuk Won;Jae-Yong Lim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3626-3643
    • /
    • 2024
  • One of the issues in the development of the sodium-cooled fast reactor (SFR) using transuranic (TRU) metallic fuel is the absence of criticality benchmark experiment that faithfully mocks up the nuclear characteristics of the target design for validation of the reactor core design code and its uncertainty quantification (UQ). This study aims to quantify the criticality uncertainty of a typical TRU burner with metallic fuel by using the standard upper safety limit (USL) estimation framework based on the similarity analysis of existing benchmark experiments but elaborated in two aspects:1) application of two-sided rather than one-sided tolerance interval and 2) inclusion of additional uncertainty to account for fission products and minor actinides not included in the benchmark experiments. To conduct the similarity analysis and evaluate the nuclear-data induced uncertainty, existing, well-verified computing codes were integrated, including the nuclear data sampling code SANDY, the nuclear data processing code NJOY, and the continuous-energy Monte Carlo code McCARD. Finally, using the SFR benchmark database comprising both publicly available and proprietary benchmark experiments, the criticality uncertainty of the TRU core model with metallic fuel was evaluated.

SEVERE ACCIDENT MANAGEMENT CONCEPT OF THE VVER-1000 AND THE JUSTIFICATION OF CORIUM RETENTION IN A CRUCIBLE-TYPE CORE CATCHER

  • Khabensky, Vladimir Benzianovich;Granovsky, Vladimir Semenovich;Bechta, Sevostian Victorovich;Gusarov, Victor Vlasmirovich
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.561-574
    • /
    • 2009
  • First ex-vessel core catcher has been applied to the practical design of NPPs with VVER-1000 reactors built in China (Tyanvan) and India (Kudankulam) for severe accident management (SAM) and mitigation of SA consequences. The paper presents the concept and basic design of this crucible-type core catcher as well as an evaluation of its efficiency. The important role of oxidic sacrificial material is discussed. Insight into the behaviour of the molten pool, which forms in the catcher after core relocation from the reactor vessel, is provided. It is shown that heat loads on the water-cooled vessel walls are kept within acceptable limits and that the necessary margins for departure from nucleate boiling (DNB) and of vessel failure caused by thermo-mechanical stress are satisfactorily provided for.

Xenon Initialization for Reactor Core Transient Simulation

  • Kim, Yong-Rae;Song, Jae-Seung;Lee, Chang-Kue;Lee, Chung-Chan;Zee, Sung-Quun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.88-93
    • /
    • 1996
  • The initial condition should be consistent with real reactor core state for the simulation of the core transient. The initial xenon distribution, which cad not be measured in the core, has a significant effect on the transient with xenon dynamics of PWR. In the simulation of the transient stating from non-equilibrium xenon state, the accurate initialization of the non-equilibrium xenon distribution is essential to predict the core transient behavior. In this study, the xenon initialization method to predict the core transient more accurately was developed through the first-order perturbation theory of the relationship between simulated power and measured power distribution and verified by the application of the simulation for a startup test of Yonggwang Unit 3.

  • PDF

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.

Applicability of the Krško nuclear power plant core Monte Carlo model for the determination of the neutron source term

  • Goricanec, Tanja;Stancar, Ziga;Kotnik, Domen;Snoj, Luka;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3528-3542
    • /
    • 2021
  • A detailed geometrical model of a Krško reactor core was developed using a Monte Carlo neutron transport code MCNP. The main goal of developing an MCNP core model is for it to be used in future research focused on ex-core calculations. A script called McCord was developed to generate MCNP input for an arbitrary fuel cycle configuration from the diffusion based core design package CORD-2, taking advantage of already available material and temperature data obtained in the nuclear core design process. The core model was used to calculate 3D power density profile inside the core. The applicability of the calculated power density distributions was tested by comparison to the CORD-2 calculations, which is regularly used for the nuclear core design calculation verification of the Krško core. For the hot zero power and hot full power states differences between MCNP and CORD-2 in the radial power density profile were <3%. When studying axial power density profiles the differences in axial offset were less than 2.3% for hot full power condition. To further confirm the applicability of the developed model, the measurements with in-core neutron detectors were compared to the calculations, where differences of 5% were observed.

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

APOLLO3 homogenization techniques for transport core calculations-application to the ASTRID CFV core

  • Vidal, Jean-Francois;Archier, Pascal;Faure, Bastien;Jouault, Valentin;Palau, Jean-Marc;Pascal, Vincent;Rimpault, Gerald;Auffret, Fabien;Graziano, Laurent;Masiello, Emiliano;Santandrea, Simone
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1379-1387
    • /
    • 2017
  • This paper presents a comparison of homogenization techniques implemented in the APOLLO3 platform for transport core calculations: standard scalar flux weighting and new flux-moment homogenization, in different combinations with (or without) leakage models. Besides the historical B1-homogeneous model, a new B-heterogeneous one has indeed been implemented recently in the two/three-dimensional-transport solver using the method of characteristics. First analyses have been performed on a very simple Sodium Fast Reactor core with a regular hexagonal lattice. They show that using the heterogeneous leakage model in association with flux-moment homogenization strongly improves the prediction of $k_{eff}$ and void reactivity effects. These good results are confirmed when the application is done to the fissile assemblies of the more complex CFV (Low Void Effect) core of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project of sodium-cooled fast breeder reactor (Generation IV).

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.