• Title/Summary/Keyword: Reactivity control

Search Result 298, Processing Time 0.026 seconds

Development of State-Based Squeak and an Examination of Its Effect on Robot Programming Education

  • Aoki, Hiroyuki;Kim, JaMee;Idosaka, Yukio;Kamada, Toshiyuki;Kanemune, Susumu;Lee, WonGyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2880-2900
    • /
    • 2012
  • Robot programming often sparks students' interest in programming, but it is not easy for them to program both procedure and reactivity of robot movements that are essential requirements. In this study, we reviewed in detail a new programming language, State-Based Squeak. It allows novice students to implement both procedure and reactivity of robots easily. The effect of this new language on robot programming education was also examined using a group of 28 middle school students. According to the results of analyzing the students' understanding of programming, reading and programming abilities the group that used State-Based Squeak (the experimental group) showed a higher completion ratio than the other (control) group. The significance of this study is that a robot programming language has been developed that addresses the concepts of both procedure and reactivity in such a way that middle school students can more easily learn how to program robots, something that is often difficult to attempt even for professional programmers.

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A.;Talebi, S.;Safarzadeh, O.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.741-751
    • /
    • 2021
  • There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.

Aortic Remodelling in Chronic Nicotine-Administered Rat

  • Zainalabidin, Satirah;Budin, Siti Balkis;Ramalingam, Anand;Lim, Yi Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.411-418
    • /
    • 2014
  • Vascular remodelling is an adaptive mechanism, which counteracts pressure changes in blood circulation. Nicotine content in cigarette increases the risk of hypertension. The exact relationship between nicotine and vascular remodelling still remain unknown. Current study was aimed to determine the effect of clinically relevant dosage of nicotine (equivalent to light smoker) on aortic reactivity, oxidative stress markers and histomorphological changes. Twelve age-matched male Sprague-Dawley rats were randomly divided into two groups, i.e.: normal saline as control or 0.6 mg/kg nicotine for 28 days (i.p., n=6 per group). On day-29, the rats were sacrificed and the thoracic aorta was dissected immediately for further studies. Mean arterial pressure (MAP) and pulse pressure (PP) of nicotine-treated vs. control were significantly increased (p<0.05). Nicotine-treated group showed significant (p<0.05) increase tunica media thickness, and decrease in lumen diameter, suggesting vascular remodelling which lead to prior hypertension state. The phenylephrine (PE)-induced contractile response in nicotine group was significantly higher than control group ($ED_{50}=1.44{\times}10^5M$ vs. $4.9{\times}10^6M$) (p<0.05~0.001). However, nicotine-treated rat showed significantly lower endothelium-dependent relaxation response to acetylcholine (ACh) than in control group ($ED_{50}=6.17{\times}10^7M$ vs. $2.82{\times}10^7M$) (p<0.05), indicating loss of primary vascular function. Malondialdehyde (MDA), a lipid peroxidation marker was significantly higher in nicotine group. Superoxide dismutase (SOD) enzymatic activity and glutathione (GSH) were all reduced in nicotine group (p<0.05) vs. control, suggesting nicotine induces oxidative imbalance. In short, chronic nicotine administration impaired aortic reactivity, probably via redox imbalance and vascular remodelling mechanism.

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

Neutronic analysis of control rod effect on safety parameters in Tehran Research Reactor

  • Torabi, Mina;Lashkari, A.;Masoudi, Seyed Farhad;Bagheri, Somayeh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1017-1023
    • /
    • 2018
  • The measurement and calculation of neutronic parameters in nuclear research reactors has an important influence on control and safety of the nuclear reactor. The power peaking factors, reactivity coefficients and kinetic parameters are the most important neutronic parameter for determining the state of the reactor. The position of the control shim safety rods in the core configuration affects these parameters. The main purpose of this work is to use the MTR_PC package to evaluate the effect of the partially insertion of the control rod on the neutronic parameters at the operating core of the Tehran Research Reactor. The simulation results show that by increasing the insertion of control rods (bank) in the core, the absolute values of power peaking factor, reactivity coefficients and effective delayed neutron fraction increased and only prompt neutron life time decreased. In addition, the results show that the changes of moderator temperature coefficients value versus the control rods positions are very significant. The average value of moderator temperature coefficients increase about 98% in the range of 0-70% insertion of control rods.

The Effect of the Substituent Direction of Monosubstituted Hydroquinones upon the Transition Temperatures of the Resulting Thermotropic Polysesters (1치환 하이드로퀴논의 치환방향이 열굴절 폴리에스테르의 전이온도에 미치는 영향)

  • Kang, sung-gu;Lee, Jin-sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Because of the difference of the relative reactivity between two hydroxyl groups of the hydroquinone due to the steric hindrance of the substituent, many combinations of the substituent direction in the polyesters derived from asymmetrical diphenols such as monosubstituted hydroquinones was expected. It was studied how the mode of the direction affected the properties of the resulting polyesters in terms of the transition temperatures of the thermotropic polyesters prepared from terephthalic acid, 2,4-dichloroterephthalic acid, and phenylhydroquinone by the reaction using p-Toluenesulfonylchloride in pyridine. The direction was tried to control the relative reactivity by changing the reaction temperature and addition time of the hydroquinone, and by modifying it through an association of the hydroquinones with DMF.

  • PDF

Influence of VOCs Structure on Catalytic Oxidation Kinetics (휘발성 유기화합물(VOCs)의 촉매산화 전환에서 결합구조의 영향 및 속도특성)

  • 이승범;윤용수;홍인권;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.44-51
    • /
    • 2000
  • The reactivity of a range of volatile organic compounds with differing functional groups observed over 0.5% $Pt/{\gamma}-Al_2O_3$ catalyst. In general, the reactivity pattern observed was alcohols > aromatics > ketones > cycloalkane > alkanes. The deep conversion was increased as reaction temperature was increased. A correlation was found between the reactivity of the individual and the strength of the weakest C-Hbond in structure. The conversion of volatile organic compounds increases in order methanol > benzene > cyclohexane > MEK > n-hexane. That is the effect of differences in total dissociation energy. An apparent zeroth-order kinetics with respect to inlet concentration have been observed. A simple multicomponent model based on two-stage redox model made reasonably good predictions of conversion over the range of parameters studied. thus, the catalytic process was suggested as the new VOCs control technology.

  • PDF

Kinetic Study on Aminolysis of 4-Nitrophenyl Nicotinate and Isonicotinate: Factors Influencing Reactivity and Reaction Mechanism

  • Kim, Min-Young;Shin, Minah;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2443-2447
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate (7) and 4-nitrophenyl isonicotinate (8) with a series of cyclic secondary amines in $H_2O$ containing 20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plots for the reactions of 7 and 8 are linear with ${\beta}_{nuc}=0.90$ and 0.92, respectively, indicating that the reactions proceed through a stepwise mechanism with expulsion of the leaving group occurring in the rate-determining step. Comparison of the reactivity of 7 and 8 with that of 4-nitrophenyl benzoate (2a) and 4-nitrophenyl picolinate (6) has revealed that their reactivity toward the amines increases in the order 2a < 7 < 8 < 6, although the reactions of these substrates proceed through the same mechanism. Factors that control reactivity and reaction mechanism have been discussed in detail (e.g., inductive and field effects, H-bonding interaction, solvent effect, etc.).