• Title/Summary/Keyword: Reactive power variation

Search Result 122, Processing Time 0.021 seconds

The Stack Design Considering The Reactive Power Supply of Grid-Connected Inverter (계통 연계형 인버터의 무효전력 공급을 고려한 Stack 설계)

  • Koh, Kwang-Soo;Oh, Pil-Kyoung;Kim, Hee-Jung;Kim, Young-Min
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.453-454
    • /
    • 2016
  • The ESS(Energy Storage System) connected with distributed generation is drawing attention due to improving the quality load leveling, peak shaving for enhancing reliability of the power grid. The grid-connected inverter makes frequency adjustment to the active power's charge discharge according to the load variation. In addition, the inverter is possible to act as a reactive power compensation device to eliminate harmonic operates as power factor change inhibiting, anti-transient voltage fluctuation, active filter. In this paper, we propose a design method of igbt stack considering the reactive power supply capacity to improve the quality and reliability of the inverter. Moreover, the grid-connected inverter considering the four-quadrant rated operation designed stack and verified the feasibility of the design through a thermal analysis.

  • PDF

System Loss Improvement through Proper Location of Active and Reactive Power Apparatus (유무효전력설비의 적소투입을 통한 전력손실개선)

  • 이상중
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.77-80
    • /
    • 2000
  • This paper presents a method for improving the power loss through optimal location of active or reactive power apparatus. The paper introduces the los sensitivities which imply the variation of the power loss with respect to the incremental bus power P, Q and uses them as the investment information for the active and reactive power apparatus. Power apparatus are invested, by the priority of loss sensitivities indices given for each bus.

  • PDF

Power Quality Improvement using DVR (DVR을 이용한 전력품질 개선)

  • Kim, Seong-Hwan
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.462-466
    • /
    • 2021
  • DVR is a device that compensates for voltage fluctuations in distribution lines and is generally used in combination with a device that compensates reactive power and improve power factor. Such a coupling compensator has the disadvantage of being relatively difficult to control and bulky. In this paper, mathematical analysis of the maximum magnitude of the compensation voltage, phase angle, compensable reactive power and active power was performed in order to simultaneously compensate the reactive power and voltage fluctuation of the distribution line by applying the power angle control method of the DVR. A control algorithm for charging active power to the battery and supplying stored energy when the voltage is changed was developed and the results were confirmed through Matlab simulation.

A Novel Line Stability Index for Voltage Stability Analysis and Contingency Ranking in Power System Using Fuzzy Based Load Flow

  • Kanimozhi, R.;Selvi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.694-703
    • /
    • 2013
  • In electric power system, the line stability indices adopted in most of the instances laid stress on variation of reactive power than real power variation of the transmission line. In this paper, a proposal is made with the formulation of a New Voltage Stability Index (NVSI) which originates from the equation of a two bus network, neglecting the resistance of transmission line, resulting in appreciable variations in both real and reactive loading. The efficacy of the index and fuzzy based load flow are validated with IEEE 30 bus and Tamil Nadu Electricity Board (TNEB) 69 bus system, a practical system in India. The results could prove that the identification of weak bus and critical line in both systems is effectively done. The weak area of the practical system and the contingency ranking with overloading either line or generator outages are found by conducting contingency analysis using NVSI.

Study on the Variation of Reactive Power When Applying the Passive Filter (수동형 필터 적용시 무효전력의 변화에 관한 연구)

  • Kim, Ji-Myeong;Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1626-1631
    • /
    • 2016
  • Generally, the low-voltage customer has been used with a linear load and nonlinear load in the 3-phase 4-wire distribution system. Linear load has usually configured the resistance and inductance, current phase is slower than the voltage phase, so power factor is low. It is required for the power factor correction device prior to the phase of the current than the voltage. The capacitor is connected in parallel to the load in order to ensure a low power factor. Power converter such as an inverter is a typical non-linear load. Non-linear load generates harmonic currents in the energy conversion process. Many electrical equipment may be adversely affected by the harmonic current. There, passive or active filter have been used to reduce these harmonics current. Passive filter consisting of inductor and capacitor generates a reactive power. According to the combination of filter inductor and capacitor, reactive power can be adjusted. In this paper, we analyzed how the combination of inductor and capacitor affects the overall power factor by simulation and measurement.

Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions (간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산)

  • Im, Jl-Hoon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Determination of Reactive Power Compensation Considering Large Disturbances for Power Flow Solvability in the Korean Power System

  • Seo, Sang-Soo;Kang, Sang-Gyun;Lee, Byong-Jun;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • This paper proposes a methodology using a tool based on the branch-parameter continuation power flow (BCPF) in order to restore the power flow solvability in unsolvable contingencies. A specified contingency from a set of transmission line contingencies is modeled, considering the transient analysis and practice in the Korean power system. This tool traces a solution path that satisfies the power flow equations with respect to the variation of the branch parameter. At a critical point, in which the branch parameter can move on to a maximum value, a sensitivity analysis with a normal vector is performed to identify the most effective compensation. With the sensitivity information, the location of the reactive power compensation is determined and the effectiveness of the sensitivity information is verified to restore the solvability. In the simulation, the proposed framework is then applied to the Korean power system.

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

Development of Accurate Load Model for Detailed Power System Stability Analysis (전력계통 안정도 정밀해석을 위한 적정 부하모델 개발)

  • Park, S.W.;Kim, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.201-205
    • /
    • 2001
  • This paper presents the load modeling process and bus load models for KEPCO power system. At first, load devices commonly used in KEPCO power systems were selected, and tested for measuring the voltage and frequency sensitivity of active and reactive power. From this test, about 40 voltage and frequency dependent load models have been obtained. The bus load composition rate for KEPCO power system has been determined using the various recent surveys and papers in order to develop the load model for a power system bus. To verify the accuracy of developed bus load models, the field test for measuring active and reactive power according to artificial variation of the bus voltage was performed at 8 substations for spring summer, autumn, winter cases. With data of this seasonal field test, more reliable bus load models for KEPCO power systems were developed.

  • PDF