• 제목/요약/키워드: Reactive power sharing

검색결과 40건 처리시간 0.023초

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

Control Strategy for Selective Compensation of Power Quality Problems through Three-Phase Four-Wire UPQC

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.576-582
    • /
    • 2011
  • This paper presents a novel control strategy for selective compensation of power quality (PQ) problems, depending upon the limited rating of voltage source inverters (VSIs), through a unified power quality conditioner (UPQC) in a three-phase four-wire distribution system. The UPQC is realized by the integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a three-phase, four-leg voltage source inverter (VSI), while a three-leg VSI is employed for the series APF of the three-phase four-wire UPQC. The proposed control scheme for the shunt APF, decomposes the load current into harmonic components generated by consumer and distorted utility. In addition to this, the positive and negative sequence fundamental frequency active components, the reactive components and harmonic components of load currents are decomposed in synchronous reference frame (SRF). The control scheme of the shunt APF performs with priority based schemes, which respects the limited rating of the VSI. For voltage harmonic mitigation, a control scheme based on SRF theory is employed for the series APF of the UPQC. The performance of the proposed control scheme of the UPQC is validated through simulations using MATLAB software with its Simulink and Power System Block set toolboxes.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

독립제어구조를 갖는 N+1 모듈형 UPS 시스템의 병렬운전 (Wireless Parallel Operation Control of N+l Redundant UPS System)

  • 조준석;한재원;최규하
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.499-508
    • /
    • 2002
  • 본 논문에서는 N.1 모듈형 UPS 시스템의 병렬운전을 위해 기존에 사용된 부하분담용 신호선을 제거하고 독립적인 운전을 수행하는 새로운 형태의 wirelss 병렬제어 알고리즘을 제안하고자 한다. 제안된 제어시스템은 기존 방식이 갖는 센싱 노이즈나 상호간섭에 의한 문제를 제거할 수 있다. 또한 wireless방식의 단점을 보완하기 위해 인버터간 불평형요소 제거 알고리즘을 적용하여 무효전력편차의 발생을 최소화하는 구조를 가지며, 시스템의 불안정한과도특성을 완충하는 가상의 임피던스를 삽입하여 과도순환전류를 저감하는 방식이 적용되었다. 제안된 알고리즘의 타당성을 검증하기 위해 시뮬레이션 결과를 제시하였다.

송전계통의 실시간 제어를 위한 위상변이기 (Phase-Shifter for Real-Time Control of Transmission System)

  • 한병문;장병건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.432-434
    • /
    • 1994
  • This paper describes a phase-shifter which can flexibly adjust the active and reactive power flow through an ac transmission line. The phase-shifter has two voltage-source converters sharing an energy storage capacitor. The magnitude of the injected voltage is controlled by the converter I connected in parallel with the sending terminal, while that of phase angle by the converter II in series with the line through the coupling transformer. In order to analyze the whole system operation, an equivalent circuit model was developed and verified by a computer simulation with EMTP code.

  • PDF

단위 역률을 갖는 직접 시비율 변조방식 3상 매트릭스 컨버터의 제어 및 동작 특성 (Control and Operating Characteristics of Three-Phase Matrix Converter with Unity Power Factor by Direct Duty-Ratio Modulation Method)

  • 이옥룡;최남섭;한병문
    • 전력전자학회논문지
    • /
    • 제14권2호
    • /
    • pp.142-149
    • /
    • 2009
  • 본 논문은 단위 역률을 갖도록 직접 시비율 펄스폭 변조 방식으로 제어되는 3상 매트릭스 컨버터의 평형 및 불평형 부하시의 동작 특성을 고찰한다. 시스템의 해석으로부터 얻어진 중요하고 유용한 사실을 정리하면 다음과 같다. (1) 단위 역률 제어 알고리즘은 부하측의 변수에 의해서가 아니라 입력전압에 의하여 정해진다. (2) 평형 3상 부하가 리액티브 부하인 경우만 아니라면 입력측 역률을 1로 만들 수 있다. (3) 불평형 선형부하의 경우, 매트릭스 컨버터의 등가입력 특성은 비선형저항과 같다. (4) 입력 주파수와 출력 주파수가 특정한 관계를 가질 때, 입력측의 각상은 동일한 평균전력 분담률을 갖는다. 해석의 타당성과 유효성은 시뮬레이션과 실험결과를 통하여 검증하였다.

스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발 (Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator)

  • 이종훤
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

임피던스 계전기를 이용한 발전기 비동기 투입 보호 연구 (A Study on Protection of Generator Asynchronization by Impedance Relaying)

  • 이종훤
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2000-2006
    • /
    • 2011
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. Where calculation method of protection settings and Logic for Protection of Generator Asynchronization will be recommended, A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection this paper describes an improved backup protection coordination scheme using a new Logic that will be suggested.

불균등 임피던스 선로를 갖는 인버터기반 분산전원의 부하전압 불평형을 보상하는 드룹 제어 (Droop Control to Compensate Load Voltage Unbalance for Inverter-based Distributed Generations with Unequal Impedance Lines)

  • 양원모;김현준;한병문
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper proposes a droop control scheme to compensate the unbalanced line-to-line voltage of unbalanced 3-phase load which is coupled with two inverter-based distributed generations through unequal impedance lines. Unbalanced line-to-line load voltages occur due to using single-phase loads, which brings about bad effects on the coupled inverters and the distributed generations. In order to compensate the unbalanced line-to-line voltages, a positive sequence voltage control was used for sharing the active and reactive power and a negative sequence control was used for reducing the negative sequence voltage. The feasibility of the proposed scheme was first verified by computer simulations, and then experiments with a hardware set-up built in the lab. The experimental results were compared with the simulation results to confirm the feasibility of the proposed scheme.