• Title/Summary/Keyword: Reactive power loss

검색결과 108건 처리시간 0.024초

무효전력 손실감도를 이용한 정적 전압 안정도 해석 (Static Voltage Stability Analysis using Reactive Power Loss Sensitivity)

  • 김원겸;이복용;이상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 전문대학교육위원 P
    • /
    • pp.52-55
    • /
    • 1999
  • In recent years, much attention has been paid to the voltage collapse phenomena. There has been reported many cases about the voltage collapse in many countries. These voltage collapse phenomena are known as the event that can occur due to reactive power deficits. This paper proposes an efficient method that can pursue the reactive power loss changes and gives the simple voltage collapse proximity indicator(VCPI) based on the reactive power loss sensitivities using optimal techniques. By comparing reactive power loss sensitivity with active power loss sensitivity, it is also proved that VCPI based on reactive power loss sensitivities is more effective. The developed VCPI is derived from the Jacobian matrix of Load Flow and the computational burden is very low and on-line implementation is possible. The proposed method is applied to a IEEE-14 bus test system and reliable and promising results are obtained.

  • PDF

무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용 (The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market)

  • 박종배;이기송;신중린;김성수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

손실감도지표의 전력계통 적용 (Applications of System Loss Sensitivity Index to Power Systems)

  • 이상중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.56-61
    • /
    • 2000
  • In the paper, the system loss sensitivity index that implies the incremental system loss with respect to the change of bus power is derived using optimization technique. The index λ reaches $\infty$ at critical loading point and can be applied to actual power systems for following purposes. 1) Evaluation of system voltage stability 2)Optimal investment of reactive power focused on minimizing system loss and maximizing system voltage stability 3)Optimal re-location of reactive power focused on minimizing system loss and maximizing system voltage stability 4)Optimal load shedding in case of severe system contingency focused on minimizing system loss and maximizing system voltage stability. Case studies for each application have proved their effectiveness.

  • PDF

유무효전력설비의 적소투입을 통한 전력손실개선 (System Loss Improvement through Proper Location of Active and Reactive Power Apparatus)

  • 이상중
    • 조명전기설비학회논문지
    • /
    • 제14권3호
    • /
    • pp.77-80
    • /
    • 2000
  • 본 논문은 有無效 섣둡jJ設觸의 投貴위치와 그 용향을 적정화하여 동일한 설비투자량에 대하여 전력손실을 최소화하는 방안에 대하여 설명하였다. 유효 및 무효전릭의 미소증분에 대한 손실의 변화를 나타내는 모선의 손실감도를 소개하고 전력송실을 최대한 개선하기 워한 유무효전력 설비의 투자지표로 이용하였다. 각 모선에 주어지는 투자지표의 우선순위에 따라 유효 및 무효전력설비가 투자되어 전력손실을 최소화한다.

  • PDF

Minimize Reactive Power Losses of Dual Active Bridge Converters using Unified Dual Phase Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.654-664
    • /
    • 2017
  • This paper proposed an unified dual-phase-shift (UDPS) control for dual active bridge (DAB) converters in order to improve efficiency for a wide output power range. Different operating modes of UDPS are characterized with respect to the reactive current distribution. The proposed UDPS has the same output power capability with conventional phase-shift (CPS) method. Furthermore, its implementation is simple since only the change of the leading phase-shift direction is required for different operating power range. The proposed UDPS control can minimize both the inductor rms current and the circulating reactive current for various voltage conversion ratios and load conditions. The optimal phase-shift pairs for two bridges of DAB converter are derived with respect to the comprehensive reactive power loss model, including the reactive components delivered from the load and back to the source. Simulation and experimental results are illustrated and explained with details. The effectiveness of the proposed method is verified in terms of reactive power losses minimization and efficiency improvement.

전렬계통의 합리적 운용제어에 관한 연구 (A Study on the Optimum Operational Control of Power System)

  • 정재길;박영문
    • 대한전기학회논문지
    • /
    • 제33권10호
    • /
    • pp.410-422
    • /
    • 1984
  • This paper presents a new practical method for optimal active and reactive power control for the economic operation in electrical power system, and the programs are developed for digital computer solution. The major features and techniques of this paper are as follows: 1) The method is presented for finding the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power balance equation considering transmission loss, and thus for determining directly optimal active power allocation berween generator unitw satisfying the equality and inequality constraints. 2) The method is proposed for solving directly the optimum economim dispatch problem without using gradient method and penalty function for both active and reactive power control. As a result, the computing time are reduced and convergence characteristic is remarkably improved. 3) Unlike most of conventional methods which adopt the transmission loss as a objective function for reactive power control, the total fuel cost of themal power plant is adopted as objective function for both active and reactive power control. consequently, more reasonable and economic profit can be achieved.

송전손실 상태식별법을 이용한 전압안정성 개선효과의 정량적 평가에 관한 연구 (A Study on the Quantatitive Evaluation of Voltage Stability Improvement Effect By the T/L-Loss System Identification Method)

  • 최종기;이봉용;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.45-47
    • /
    • 1994
  • The simulation of reactive power compensation in 5-bus and 25-bus system was conducted using transmission-line loss system identification method. Sensitivities of maximum load-power with respect to reactive power compensation was identified by the simulation. With sufficient reactive power compensation at the first voltage-collapsing load-bus, the first voltage collapse could be prevented until the next voltage-collapsing load-bus lost its voltage stability. And the total compensated reactive power at the first voltage-collapsing bus means reactive power margin of voltage collapse or distance to voltage collapse. This quantity can be useful for determining the size of compensating devices or the site to compensate.

  • PDF

송전손실 재분배와 전압의존형 부하모델을 적용한 GA기반의 무효전력 최적배분 (GA-based Optimal Reactive Power Dispatch Taking Account of Transmission Loss Re-distribution and Voltage Dependent Load Models)

  • 채명석;이명환;김병섭;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.350-353
    • /
    • 2000
  • This paper presents an algorithm for Optimal Reactive Power Dispatch(ORPD) problem based on genetic algorithm. Optimal reactive power dispatch is particularized to the minimization of transmission line losses by suitable selection of generator reactive power outputs and transformer tap settings. To reduce system loss and improve voltage profile, two methods, Loss Re-Distribution Algorithm (LRDA) and Voltage Dependent Load Model (VDLM), are applied to ORPD. The proposed methods have been evaluated on the IEEE 30 bus system. Each of results have been compared with result of load flow.

  • PDF

배전 선로에 연계된 다수대의 변동성 재생에너지 발전 시스템의 출력 유효전력 변동에 따른 무효전력 제어를 이용한 전압 변동 보상 (Compensation of Voltage Variation Using Active Power-Dependent Reactive Power Control with Multiple VRE Systems Connected in a Distribution Line)

  • 이상훈;김수빈;송승호
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.47-56
    • /
    • 2018
  • This paper introduces an active power dependent standard characteristic curve, Q(P) to compensate for voltage variations due to the output of distributed generation. This paper presents an efficient control method of grid-connected inverters by comparing and analyzing voltage variation magnitude and line loss according to the compensation method. Voltage variations are caused not only by active power, but also by the change of reactive power flowing in the line. In particular, the system is in a relatively remote place in a coastal area compared with existing power plants, so it is relatively weak and may not be suitable for voltage control. So, since it is very important to keep the voltage below the normal voltage limit within the specified inverter capacity and to minimize line loss due to the reactive power. we describe the active power dependent standard characteristic curve, Q(P) method and verify the magnitude of voltage variation by simulation. Finally, the characteristics of each control method and line loss are compared and analyzed.

손실 감도를 이용한 전압붕괴 근접도 지표 (Voltage Collapse Approximity Indeces Using The Loss Sensitivity)

  • 김용배;김건증;추진부;김원겸;이상중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.218-221
    • /
    • 1992
  • Recent years voltage collapse phenomenon have a great attention to power system engineers. As the system size increases the voltage problem shows a very complicated and the reactive power contol problem becomes more difficult. This paper gives an efficient methods for calculating voltage collapse proximity index based on the reactive power loss sensitivity and real power loss sensitivity. The system voltages are tightly associated with the system reactive power, so the proposed voltage collapse proximity index is very usefull for the system voltage control problems. Numerical examples showed a good and reliable results.

  • PDF