• 제목/요약/키워드: Reactive power compensator

검색결과 171건 처리시간 0.034초

SVC 설치 운전에 따른 계통의 영향성 평가 (Evaluation of Effects on Power System by Installing the Static Var Compensator)

  • 윤종수;김용학;김수열
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1187-1193
    • /
    • 2010
  • This paper provides the methods for enhancing the stability with normal or emergency operating conditions in real power systems and copes with the unbalance of demand of reactive power due to the loss of facility, such as 765kV transmission line. In this paper, we focused on the maximum allowable transmission power(hereafter, MAXTP) in the metropolitan area. In order to increase the MAXTP, the application of reactive power compensators, SVC, and Shunt compensator and reactor, is analyzed as an enhancing method of stability and MAXTP. Particularly, the f-V analysis was performed for the postulated contingency, in order to evaluate the effects on SVC. Conclusively, the stability of power systems could be enhanced and the MAXTP is increased effectively with Dongseoul SVC which has the capacity 200MVAr.

강제 전류 싸이크로 컨버터를 이용한 무효 전력 보상 (A Power Factor Compensator Using a Force-Commutated Cycloconverter)

  • 정연택;서영수;임영배;김성기;황준하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.770-772
    • /
    • 1993
  • This paper is a study of a reactive-power compensator. It make using Power-MOSFET that be little quantity driving-power, easy to control, and be passible to highspeed wich be capable to achieve a reactive power compensator, to get rid of harmonics. On account of having no particular control circuit, composing not need to energy storage element and feedback control compered the previous power transformer in the system organization. It efficiqntly ueed to be in power factor compensation variable load.

  • PDF

계통연계 풍력발전시스템의 무효전력 보상에 대한 시뮬레이션 (Simulation of Reactive Power Compensation in Grid-Connected Wind Power Generation System)

  • 노경수;장보경
    • 조명전기설비학회논문지
    • /
    • 제25권6호
    • /
    • pp.82-89
    • /
    • 2011
  • Reactive power support is considered to be necessary for dealing with a voltage stability issue with wind turbine system employing squirrel-cage induction generator(SCIG). This paper analyses steady-state characteristics of the SCIG wind turbine system by simulating torque-slip characteristics of SCIG with respect to variations of interconnecting network strength and generator terminal voltage. It also presents dynamics analysis of SCIG wind turbine system on Simulink to investigate the impact of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient stability enhancement. It analysed transient stability with varying fault duration times and compared the transient stability characteristics with varying rated capacities of SVC and STATCOM. It is shown that the STATCOM has a better performance and reactive power support compared to SVC.

무효전력 제어에 의한 PCC전압 보상을 갖는 삼상 병렬형 능동전력필터 (A Three-Phase Parallel Active Power Filter Operating with PCC Voltage Compensation by Controlling Reactive Power)

  • 이우철;현동석;이택기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권3호
    • /
    • pp.211-218
    • /
    • 2000
  • The performance and dynamic characteristics of three-phase active power filter with PCC voltage compensation is presented and analyzed in this paper. The characteristics of parallel active filter are discussed when they are applied to nonlinear loads with current source and voltage source type, the characteristics of voltage compensator and comparison of two functions are discussed. The proposed scheme in this paper employs a PWM voltage-source inverter and has two operation modes. First, it operates as a conventional active filter with reactive power compensation while PCC voltage is in a certain range. Second, is operates as a voltage compensator while PCC voltage is out of range. Finally, the validity of this scheme is investigated through analysis of simulation and experimental results for a prototype active power filter system rated at 10KVA.

  • PDF

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.

농형유도 풍력발전기의 성능개선을 위한 에너지 저장장치의 동작특성 분석 (Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator)

  • 심명보;한병문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1045_1046
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

  • PDF

농형유도 풍력발전시스템을 위한 유.무효전력보상장치 (Active and Reactive Power Compensator for Wind Power System with Squirrel-Cage Induction Generator)

  • 양승철;주영아;한병문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.48-50
    • /
    • 2008
  • A wind power system with squirrel-cage induction generator has irregular change of output power according to the sudden change of wind speed. This paper describes the development of a active and reactive power compensator, which is composed of a 3-phase inverter and a bidirectional DC/DC converter with super-capacitor. The operational characteristic was analyzed through simulations with PSCAD/EMTDC and experimental works with a scaled model. The developed system can continuously compensate the active power change with energy storage and the reactive power change with 3-phase inverter.

  • PDF

송전 전력 제어를 위한 분산 정지형 직렬 보상기의 무효전력 주입 기법 (Algorithm of reactive power injection on Distributed Static Series Compensator)

  • 윤한종;이태영;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.214-215
    • /
    • 2017
  • Distributed Flexible AC Transmission System(D-FACTS) was proposed as a solution for weakness of FACTS device s. The D-FACTS device DSSC(Distributed Static Series Co mpensator) can provide controllable reactance compensation in transmission line such as SSSC(Static Synchronous Series Compensator). This paper introduce the algorithm of reactive power injection on DSSC and propose the method of current balancing by reactive power injection. The proposed algorithm has been verified with simulation and experiment results.

  • PDF

멀티레벨 인버터를 이용한 무효전력 보상장치에서의 DC-Link 전압 불평형 보상 (DC-Link Voltage Unbalance Compensation of Reactive Power Compensator using Multi-level Inverter)

  • 김효진;정승기
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, we use a static synchronous compensator(STATCOM) with cascaded H-bride topologies, because it is easy to increase capacity and to reduce total harmonic distortion(THD). When we use equipment for reactive power compensation, dc-link voltage unbalances occur from several reasons although loads are balanced. In the past, switching pattern change of single phase inverter and reference voltage magnitude change of inverter equipped with power sensor have been used for dc-link voltage balance. But previous methods are more complicated and expensive because of additional component costs. Therefore, this paper explains reasons of dc-link voltage unbalance and proposes solution. This solution is complex method that is composed of reference voltage magnitude change of inverter without additional hardware and shifted phase angle of inverter reference voltages change. It proves possibility through 1000[KVA] system simulation.

국제 열핵융합실험로 펄스전원계통의 무효전력보상기 검증 (Reactive Power Compensator for Pulsed Power Electric Network of International Thermonuclear Experimental Reactor)

  • 조현식;배상훈;오종석;차한주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.72-73
    • /
    • 2014
  • 본 논문에서는 ITER 펄스전원계통의 무효전력보상기(Reactive Power Compensator)의 해석 및 검증에 대하여 기술하였다. ITER 펄스전원계통은 66kV에 흐르는 무효전력량을 250MVar이하로 제한하기 위하여 정지형 무효전력보상기(Static Var Compensator)의 대표적인 장치인 싸이리스터 제어 리액터(TCR)와 고조파 필터(HF)로 구성된 무효전력보상기(RPC)를 사용한다. RPC에 적용되어 여러 ITER 초전도 코일 전원장치에서 발생하는 무효전력의 크기를 예측하여 보상하는 무효전력 보상기법을 해석한다. 본 논문에서는 RPC의 무효전력 보상동작을 실제 제어기와 RTDS를 연동하여 실험하여 검증하였고, RPC의 유무에 따라서 66kV 계통의 무효전력 최대값이 120MVar에서 40MVar로 감소하는 것을 확인하였다.

  • PDF