• Title/Summary/Keyword: Reactive oxygen species (ROS)

Search Result 1,859, Processing Time 0.035 seconds

Role of Calmodulin in the Generation of Reactive Oxygen Species and Apoptosis Induced by Tamoxifen in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • Tamoxifen, an antiestrogen, has previously been shown to induce apoptosis in HepG2 human hepatoblastoma cells through activation of the pathways independent of estrogen receptors, i.e., intracellular $Ca^{2+}$ increase and generation of reactive oxygen species (ROS). However, the mechanism of tamoxifen to link increased intracellular $Ca^{2+}$ to ROS generation is currently unknown. Thus, in this study we investigated the possible involvement of calmodulin, a $Ca^{2+}$ activated protein, and $Ca^{2+}$/calmodulin-dependent protein kinase II in the above tamoxifen-induced events. Treatment with calmodulin antagonists (calmidazolium and trifluoroperazine) or specific inhibitors of $Ca^{2+}$/calmodulin-dependent protein kinase II (KN-93 and KN-62) inhibited the tamoxifen-induced apoptosis in a dose-dependent manner. In addition, these agents blocked the tamoxifen-induced ROS generation in a concentration-dependent fashion, which was completely suppressed by intracellular $Ca^{2+}$ chelation. These results demonstrate for the first time that, despite of its well-known direct calmodulin-inhibitory activity, tamoxifen may generate ROS and induce apoptosis through indirect activation of calmodulin and $Ca^{2+}$/calmodulin-dependent protein kinase II in HepG2 cells.

Effects of Heterologous Expression of Thioredoxin Reductase on the Level of Reactive Oxygen Species in COS-7 Cells

  • Kang, Hyun-Jung;Hong, Sung-Min;Kim, Byung-Chul;Park, Eun-Hee;Ahn, Kisup;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • Thioredoxin reductase (TrxR), a component of the redox control system involving thioredoxin (Trx), is implicated in defense against oxidative stress, control of cell growth and proliferation, and regulation of apoptosis. In the present study a stable transfectant was made by introducing the vector pcDNA3.0 harboring the fission yeast TrxR gene into COS-7 African green monkey kidney fibroblast cells. The exogenous TrxR gene led to an increase in TrxR activity of up to 3.2-fold but did not affect glutathione (GSH) content, or glutaredoxin and caspase-3 activities. Levels of reactive oxygen species (ROS), but not those of nitric oxide (NO), were reduced. Conversely, 1-chloro-2,4-dinitrobezene (CDNB), an irreversible inhibitor of mammalian TrxR, enhanced ROS levels in the COS-7 cells. After treatment with hydrogen peroxide, the level of intracellular ROS was lower in the transfectants than in the vector control cells. These results confirm that TrxR is a crucial determinant of the level of cellular ROS during oxidative stress as well as in the normal state.

Effect of Antioxidant Supplementation in Freezing Extender on Porcine Sperm Viability, Motility and Reactive Oxygen Species

  • Park, Sang-Hyoun;Yu, Il-Jeoung
    • Journal of Embryo Transfer
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • The present study was aimed to determine the effect of green tea extract (GTE) and beta-mercaptoethanol (${\beta}$-ME) supplementation in boar sperm freezing extender on sperm motility, viability and reactive oxygen species (ROS) level. Experimental groups were allocated into Lactose-egg yolk (LEY) without antioxidant (control), GTE (1,000 mg/L GTE in LEY) and ${\beta}$-ME ($50{\mu}M$ ${\beta}$-ME in LEY). Spermatozoa extended with LEY were cooled to $5^{\circ}C$ for 3 h and then kept at $5^{\circ}C$ for 30 min following dilution with LEY containing 9% glycerol and 1.5% Equex STM (final sperm concentration: $1{\times}10^8/mL$). Spermatozoa were loaded into straws and frozen in nitrogen vapor for 20 min. Following thawing at $37^{\circ}C$ for 25 sec, sperm viability and ROS level were measured using fluorescent double stain Fertility(R) and cytometry, respectively. Motility and viability of GTE supplemented-group were higher than those of control and ${\beta}$-ME without significance. ROS level in GTE group showed significantly lower than control (P < 0.05). In conclusion, GTE supplementation in boar sperm freezing extender can reduce ROS generation during freezing.

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species

  • Giyeol Han;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1547-1552
    • /
    • 2022
  • β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

The Effect of UV-A and Reactive Oxygen Species on Glycosylation and Fragmentation of Calf Skin Collagen

  • Wan Goo Cho;Sang Jin Kang;Seong Don Hong;Quse Chae
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.107-109
    • /
    • 1993
  • Non-enzymatic glycosylation and fragmentation of collagen molecule were investigated by irradiating Ultraviolet A(UV-A) with or without scavengers of reactive oxygen species (ROS) in the presence of glucose. Non-enzymatic glycosylation was increased by UV-A at high concentration of glucose. It was reduced in the presence of the scavengers of superoxide radical and singlet oxygen, but not reduced in the presence of hydroxy radical scavenger. Fragmentation of collagen was increased by UV-A, but it was decreased in the presence of all ROS scavengers tested. Superoxide radical and singlet oxygen produced by autoxidation of glucose without UV-A may encounter the initial phase of glycosylation. Data presented here suggest that UV-A affects only on the fragmentation process, but all ROS except hydroxy radical act on both processes. It appears that hydroxy radical does not act on the glycosylation process.

MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation

  • Ma, Eunsook;Jeong, Seon-Ju;Choi, Joon-Seok;Nguyen, Thi Ha;Jeong, Chul-Ho;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Reactive oxygen species (ROS) are widely generated in biological processes such as normal metabolism and response to xenobiotic exposure. While ROS can be beneficial or harmful to cells and tissues, generation of ROS by diverse anti-cancer drugs or phytochemicals plays an important role in the induction of apoptosis. We recently identified a derivative of naphthalene, MS-5, that induces apoptosis of an ovarian cell, CAOV-3. Interestingly, MS-5 induced apoptosis by down-regulating the ROS. Cell viability was evaluated by water-soluble tetrazolium salt (WST-1) assay. Apoptosis was evaluated by flow cytometry analysis. Intracellular ROS ($H_2O_2$), mitochondrial superoxide, mitochondrial membrane potential (MMP) and effect on cycle were determined by flow cytometry. Protein expression was assessed by western blotting. The level of ATP was measured using ATP Colorimetric/Fluorometric Assay kit. MS-5 inhibited growth of ovarian cancer cell lines, CAOV-3, in a concentration- and time-dependent manner. MS-5 also induced G1 cell cycle arrest in CAOV-3 cells, while MS-5 decreased intracellular ROS generation. In addition, cells treated with MS-5 showed the decrease in MMP and ATP production. In this study, we found that treatment with MS-5 in CAOV-3 cells induced apoptosis but decreased ROS level. We suspect that MS-5 might interfere with the minimum requirements of ROS for survival. These perturbations appear to be concentration-dependent, suggesting that MS-5 may induce apoptosis by interfering with ROS generation. We propose that MS-5 may be a potent therapeutic agent for inducing apoptosis in ovarian cancer cell through regulation of ROS.

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

Suppression of Reactive Oxygen Species Production by Water-extracts of Coptidis Rhizoma Enhances Neuronal Survival in a Hypoxic Model of Cultured Rat Cortical Cells. (흰쥐 대뇌세포의 저산소증 모델에서 황련의 활성산소 생성 억제와 신경세포사 억제)

  • Choi, Ju-Li;Shin, Gil-Jo;Lee, Won-Chul;Moon, Il-Soo;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.311-317
    • /
    • 2008
  • Pathophysiological oxidative stress results in neuronal cell death mainly due to the generation reactive oxygen species (ROS). In low oxygen situation such as hypoxia and ischemia, excessive ROS is generated. Coptidis Rhizoma (CR) is a traditional medicine used for the incipient stroke. In this report we show that CR water extracts $(1\;{\mu}g/ml)$ exhibited protective effects of neuronal cell death in a hypoxic model (2% $O_2/5%\;CO_2,\;37^{\circ}C,$ 3 hr) of cultured rat cortical cells. We further show that CR water extracts significantly reduced the intensity of green fluorescence after staining with $H_2DCF-DA$ on one hour and three days after hypoxic shock and in normoxia as well. Our results indicate that CR water extracts prevent neuronal death by suppressing ROS generation.

Inhibitory Phlorotannins from the Edible Brown Alga Ecklonia stolonifera on Total Reactive Oxygen Species (ROS) Generation

  • Kang, Hye-Sook;Chung, Hae-Young;Kim, Ji-Young;Son, Byeng-Wha;Jung, Hyun-Ah;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.194-198
    • /
    • 2004
  • Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2',7'-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species: UIva pertusa, Symphyocladia latiuscula, and Ecklonia stolonifera. At a final concentration of 25 $\mu\textrm{g}$/mL, U. pertusa inhibited 85.65$\pm$20.28% of total ROS generation, S. latiscula caused 50.63$\pm$0.09% inhibitory, and the Ecklonia species was 44.30$\pm$7.33% inhibition. E. stolonifera OKAMURA (Lam-inariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extrclct of E. stolonifera inhibited total ROS generation.