• Title/Summary/Keyword: Reactive oxygen

Search Result 3,121, Processing Time 0.027 seconds

Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells (고초균에 의한 생강 발효 추출물의 신경세포 보호 효과)

  • Yang, Hee Sun;Kim, Mi Jin;Kim, Mina;Choe, Jeong-sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.618-630
    • /
    • 2021
  • Purpose: The ginger rhizome (Zingiber officinale) is widely cultivated as a spice for its aromatic and pungent components. One of its constituents, 6-hydroxydopamine (6-OHDA) is usually thought to cross the cell membrane through dopamine uptake transporters, and induce inhibition of mitochondrial respiration and the generation of intracellular reactive oxygen species (ROS). This study examines the neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of fermented ginger extracts (FGEs) on 6-OHDA induced toxicity in SH-SY5Y human neuroblastoma cells. Methods: Ginger was fermented using 2 species of Bacillus subtilis, with or without enzyme pretreatment. Each sample was extracted with 70% ethanol. Neurotoxicity was assessed by applying the EZ-Cytox cell viability assay and by measuring lactic dehydrogenase (LDH) release. Morphological changes of apoptotic cell nuclei were observed by Hoechst staining. Cell growth and apoptosis of SH-SY5Y cells were determined by Western blotting and enzyme activity analysis of caspase-3, and AChE enzymatic activity was determined by the colorimetric assay. Results: In terms of cell viability and LDH release, exposure to FGE showed neuroprotective activities against 6-OHDA stimulated stress in SH-SY5Y cells. Furthermore, FGE reduced the 6-OHDA-induced apoptosis, as determined by Hoechst staining. The occurrence of apoptosis in 6-OHDA treated cells was confirmed by determining the caspase-3 activity. Exposure to 6-OHDA resulted in increased caspase-3 activity of SH-SY5Y cells, as compared to the unexposed group. However, pre-treatment with FGE inhibited the activity of caspase-3. The neuroprotective effects of FGE were also found to be caspase-dependent, based on reduction of caspase-3 activity. Exposure to FGE also inhibited the activity of AChE induced by 6-OHDA, in a dose-dependent manner. Conclusion: Taken together, our results show that FGE exhibits a neuroprotective effect in 6-OHDA treated SH-SY5Y cells, thereby making it a potential novel agent for the prevention or treatment of neurodegenerative disease.

Anti-obesogenic Effect of Brassica juncea Extract on Bisphenol-A Induced Adipogenesis of 3T3-L1 Cells (비스페놀 A (Bisphenol-A)로 유도된 지방세포 분화에 미치는 갓 추출물의 항오비소겐 효과)

  • Lee, Se-jeong;Na, Uoon-Joo;Choi, Sun-Il;Han, Xionggao;Men, Xiao;Lee, Youn Hwan;Kim, Hyun Duk;Kim, Yoon Jung;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.528-536
    • /
    • 2021
  • The purpose of the study was to investigate the content of sinigrin, an index component, in Brassica juncea extract and to evaluate the differentiation of lipocytes, inhibition of production of reactive oxygen species (ROS) and reduction of protein production by lipogenic factors (PPARγ, C/EBPα, aP2) in the processing of Brassica juncea extract and sinigrin in 3T3-L1 preadipocytes which induces Bisphenol A (BPA), an endocrine disrupting environmental hormone. From the investigation, the content of sinigrin in Brassica juncea extract, measured by HPLC, is found to be 21.27±0.2 mg/g. The XTT assay result on BPA-derived 3T3-L1 adipocytes shows there is no cytotoxicity found from 180 µM of sinigrin and 300 ㎍/mL of Brassica juncea extract. Moreover, both intracellular lipid accumulation and ROS production during differentiation of lipocyte are significantly reduced in cells processed with Brassica juncea extract and sinigrin. Lastly, it was also found that the production of transcription factors of lipocyte differentiation, PPARγ, C/EBPα and aP2, were found to be suppressed by the application of Brassica juncea extract and sinigrin. Such results reveals that Brassica juncea is effective in not only suppressing lipid accumulation in the environmental hormone bisphenol A-derived lipocyte, but also in reducing the ROS. The sinigrin-containing Brassica juncea is highly expected to be used in natural functional supplements that prevents the lipid metabolism disorders caused by BPA. There are necessities for additional clinical research and follow-up studies on the in vivo model to verify the relevant mechanisms.

Gene Expression of Detoxification Enzymes in Tenebrio molitor after Fungicide Captan Exposure (살진균제인 캡탄 처리 후 갈색거저리의 해독효소 유전자 발현)

  • Jang, Ho am;Baek, Hyoung-Seon;Kim, Bo Bae;Kojour, Maryam Ali Mohammadie;Patnaik, Bharat Bhusan;Jo, Yong Hun;Han, Yeon Soo
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.155-163
    • /
    • 2022
  • The application of fungicides is indispensable to global food security, and their use has increased in recent times. Fungicides, directly or indirectly, have impacted insects, leading to genetic and molecular-level changes. Various detoxification mechanisms allow insects to eliminate reactive oxygen species (ROS) toxicity induced by agrochemicals including fungicides. In the present study, we analyzed the mRNA expression levels of detoxifying enzymes in Tenebrio molitor larvae following exposure to non-lethal doses (0.2, 2, and 20 ㎍/µL) of a fungicide captan. Transcripts of peroxidases (POXs), catalases (CATs), superoxide dismutases (SODs), and glutathione-s-transferases (GSTs) were screened from the T. molitor transcriptome database. RT-qPCR analysis showed that TmPOX5 mRNA increased significantly 24 h post-captan exposure. A similar increase was noticed for TmSOD4 mRNA 3 h post-captan exposure. Moreover, the expression of TmCAT2 mRNA increased significantly 24 h post-treatment with 2 ㎍/µL captan. TmGST1 and TmGST3 mRNA expression also increased noticeably after captan exposure. Taken together, these results suggest that TmPOX5 and TmSOD4 mRNA can be used as biomarkers or xenobiotics sensors for captan exposure in T. molitor, while other detoxifying enzymes showed differential expression.

The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages (RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할)

  • Kwon, Da Hye;Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Nam, Soo-Wan;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1110-1119
    • /
    • 2021
  • The purpose of this study was to investigate whether the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages could be promoted by particulate matter 2.5 (PM2.5) stimulation. To this end, the levels of inflammatory parameters, reactive oxygen species (ROS) and inflammation-regulating genes were investigated in RAW 264.7 cells treated with PM2.5 in the presence or absence of LPS. Our results showed that the production levels of pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (interleukin-6 and -1β) were significantly increased by PM2.5 stimulation in LPS-treated RAW 264.7 cells, which was correlated with increased expression genes involved in their production. In addition, when LPS-treated RAW 264.7 cells were exposed to PM2.5, nuclear factor-kappaB (NF-κB) expression was further increased in the nucleus, and the expression of inhibitor of NF-κB as well as NF-κB in the cytoplasm was decreased. These results suggest that the co-treatment of PM2.5 and LPS further increases the activation of the NF-κB signaling pathway compared to each treatment alone, thereby contributing to the promotion of transcriptional activity of inflammatory genes. Furthermore, although the generation of ROS was greatly increased by PM2.5 in LPS-treated RAW 264.7 cells, the NF-κB inhibitor did not reduce the generation of ROS. In addition, when the generation of ROS was artificially suppressed, the production of inflammatory mediators and the activation of NF-κB were both abolished. Therefore, our results suggest that the increase in the NF-κB-mediated inflammatory response induced by PM2.5 in LPS-treated RAW 264.7 macrophages was a ROS generation-dependent phenomenon.

The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells (미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도)

  • Park, Beom Su;Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • Recently, interest in the harmful factors of particulate matter (PM), a major component of air pollution, has been increasing. In particular, PM2.5 with a diameter of less than 2.5 ㎛ is well known to induce oxidative stress accompanied by autophagy in human lung epithelial cells. However, studies on whether PM2.5 increases autophagy under oxidative stress and whether this process is reactive oxygen species (ROS)-dependent are insufficient. Therefore, in this study, we investigated whether PM2.5 promotes autophagy through the generation of ROS in human alveolar epithelial A594 cells. According to our results, cells co-treated with PM2.5 and hydrogen peroxide (H2O2) showed a lower cell viability than cells treated with each alone, which was associated with increased total and mitochondrial ROS production. The co-treatment of PM2.5 and H2O2 also increased autophagy induction, which was confirmed through Cyto-ID staining, and the expression of autophagy biomarker proteins increased. However, when ROS generation was artificially blocked by N-acetyl-L-cysteine pretreatment, the reduction in cell viability and induction of autophagy by PM2.5 and H2O2 co-treatment were markedly attenuated. Therefore, the present results suggest that PM2.5-induced ROS generation may play a critical role in autophagy induction in A549 cells.

The protective effect of Eucommia ulmoides leaves on high glucose-induced oxidative stress in HT-29 intestinal epithelial cells (고당으로 유도된 산화적 스트레스에 대한 두충 잎 추출물의 장 상피 세포 보호 효과)

  • Han Su Lee;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Ju Hui Kim;Hyun Ji Eo;Chul-Woo Kim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.183-196
    • /
    • 2024
  • This study investigated the protective effect of the aqueous extract of Eucommia ulmoides leaves (AEEL) against high glucose-induced human colon epithelial HT-29 cells. The 2,2'-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activities, ferric reducing/antioxidant power (FRAP), and malondialdehyde (MDA) analyses indicated that AEEL had significant antioxidant activities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that AEEL increased cell viability against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. Also, the 2'-7'-dichlorodihydrofluorescein diacetate (DCF-DA) assay indicated that AEEL decreased intracellular reactive oxygen species (ROS) against high glucose-, H2O2-, and lipopolysaccharide (LPS)-induced cytotoxicity in HT-29 cells. AEEL showed inhibitory activities against α-glucosidase and inhibited the formation of advanced glycation end products (AGEs). AEEL showed significant positive effects on the viability and titratable acidity of L. brevis. The high-performance liquid chromatogram (HPLC) analysis identified chlorogenic acid and rutin as the major compounds of AEEL. These results suggested that AEEL has the potential to be used as a functional food source to suppress blood glucose levels and protect the gut from high glucose-induced oxidative stress.

Protective Effect of Plantago asiatica L. Leaf Ethanolic Extract Against Ferric Nitrilotriacetate-Induced Prostate Oxidative Damage in Rats (랫드에서의 Fe-NTA 유발 산화스트레스에 대한 차전초 에탄올 추출물의 전립선보호 효과)

  • Hong, Seung-Taek;Hong, Chung-Oui;Nam, Mi-Hyun;Ma, Yuan-Yuan;Hong, Yun-Jin;Son, Da-Hee;Chun, Su-Hyun;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • Plantago asiatica L. (P. asiatica) has been used as one of the popular folk medicines in Asia for human health care practices. Various activities of P. asiatica have been reported, such as anti-oxidant, anti-glycation, anti-inflammatory and hepatoprotective activity. Therefore, the potential of P. asiatica to reduce oxidative stress has been studied in several ways for over 20 years, especially at liver and kidney. However no investigation has been reported revealing its protective effect on prostate. Method: Treatment of P. asiatica leaf ethanolic extract (PLE) (1 g/kg body weight (b.w.), 2 g/kg b.w., or 4 g/kg b.w.) were given separately to animals for pretreatment once per day for 7 days, and on the seventh day ferric nitrilotriacetate (Fe-NTA; 0.24 mmol Fe/kg b.w.), which is known as an oxidative stress-inducer at prostate, was administrated by i.p to negative control group. At the end of the study period, dissection was carried out for detecting the prostate protective effect of PLE. Result: Fe-NTA-treated animals produced reactive oxygen species (ROS) resulting in depletion of antioxidant biomaker, such as glutathione (GSH), glutathione reductase (GR), and glutathione s-transferase (GST) and increase of lipid peroxidation in prostate. However, PLE pretreatment resulted in an increase in the GSH, GST and GR levels concentration dependent manner and in an significant decrease in the levels of lipid peroxidation. Conclusion: Our data suggest that PLE may be effective in protecting oxidative stress-induced damage of prostate, and PLE may be an chemopreventive agent against Fe-NTA-mediated prostate oxidative damage.

The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury (기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할)

  • Kim, Je-Hyeong;Yoon, Dae Wui;Hur, Gyu Young;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.451-463
    • /
    • 2006
  • Background : Reactive oxygen species (ROS) take center stage as executers in ventilator-induced lung injury (VILI). The protein with DNA-damage scanning activity, poly (ADP-ribose) polymerase-1 (PARP1), signals DNA rupture and participates in base-excision repair. Paradoxically,overactivation of PARP1 in response to massive genotoxic injury such as ROS can induce cell death through ${\beta}$ -nicotinamide adenine dinucleotide ($NAD^+$) depletion, resulting in inflammation. The purpose of this study is to investigate the role of PARP1 and the effect of its inhibitor in VILI. Methods : Forty-eight male C57BL/6 mice were divided into sham, lung protective ventilation(LPV), VILI, and PARP1 inhibitor (PJ34)+VILI (PJ34+VILI) groups. Mechanical ventilator setting for the LPV group was $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min + 2 hours. The VILI and PJ34+VILI groups were ventilated on a setting of $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min + 2 hours. As a PARP1 inhibitor for the PJ34+VILI group, 20 mg/Kg of PJ34 was treated intraperitoneally 2 hours before mechanical ventilation. Wet-to-dry weight ratio and acute lung injury (ALI) score were measured to determine the degree of VILI. PARP1 activity was evaluated by using an immunohistochemical method utilizing biotinylated NAD. Myeloperoxidase (MPO) activity and the concentration of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 were measured in bronchoalveolar lavage fluid (BALF). Results : In the PJ34+VILI group, PJ34 pretreatment significantly reduced the degree of lung injury, compared with the VILI group (p<0.05). The number of cells expressing PARP1 activity was significantly increased in the VILI group, but significantly decreased in the PJ34+VILI group (p=0.001). In BALF, MPO activity, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 were also significantly lower in the PJ34+VILI group (all, p<0.05). Conclusion : PARP1 overactivation plays a major role in the mechanism of VILI. PARP1 inhibitor prevents VILI, and decreases MPO activity and inflammatory cytokines.

Studies on the Physico-chemical Properties and Characterization of Soil Organic Matter in Jeju Volcanic Ash Soil (제주도(濟州道) 화산회토양(火山灰土壌)의 이화학적(理化学的) 특성(特性) 및 유기물(有機物) 성상(性状)에 관(関)한 연구(硏究))

  • Lee, Sang-Kyu;Cha, Kyu-Seuk;Kim, In-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 1983
  • A series of laboratory experiment was conducted to find out the chemical composition, characterization of humic substances by physical and chemical methods and reaction of Na-pyrophosphate, $Ca(OH)_2$ and rice straw with albumin on the degradation of soil organic matter in the volcanic ask soils of the Jeju Island. Results obtained were summarized as follows: 1. The contents of organic matter, available silicon, active iron and aluminum concentration in volcanic ash the soils were remarkably higher but available phosphorous was comparatively lower than the mineral soils. In volcanic ash soil, the contents of potassium, calcium and magnessium were higher in upland soil than that of forest soil. The ratios of active $Al^{{+}{+}{+}}/Fe^{{+}{+}}$, C/P and $K/Ca^+$ Mg were apparently high in volcanic ash soils while that of $SiO_2$/O.M. was high in mineral soil. 2. The carbon/nitrogen ratio in humin, humic acid content in organic matter, and carbon contents of humin in total carbon of soil organic matter were apparently higher in the volcanic ash soils than in the mineral soils, The total nitrogen and fractions of acid or alkali soluble nitrogen were remarkably high in volcanic ash soils while mineralizable nitrogen ($NH_4$-N and $NO_3$) contents were high in mineral soils. 3. The values of K600, RF and log K were also higher in volcanic ash soils than those in mineral soils, and the absorbance in the visible range were high and color was dark in the soil of which humification was progressed Extracted humic acid from volcanic ash soil was less reactive to the oxidizing chemical reagent and was persistance to the acid or alkali hydrolysises. 4. The major oxygen-containing functional groups in humic substances of volcanic ash soils were phenolic-OH alcoholic-OH and carboxyl groups while those in mineral soil were methoxyl and carbonyl groups. 5. Absorption spectra of alkaline solution of humic acid ranged from 200 nm to maxima 500 nm. Visible spectra peaks of from humic substances in the visible region were recognized at 350, 420, 450 and 480 nm. Only one single absorbance peak was observed in the visible region at 362 nm for Heugag series and two absorbance Peak were also at 360 nm and 390 nm for Yeungrag series. 6. Evolution of carbon as $Co_2$ was increased with addition of Na-pyrophosphate in Namweon and Heugag series, and "priming effects" took place on the soil organic matter decomposition by addition of rice straw with albumin in Ido series.

  • PDF

Inflammatory Reponse of the Lung to Hypothermia and Fluid Therapy after Hemorrhagic Shock in Rats (흰쥐에서 출혈성 쇼크 후 회복 시 저체온법 및 수액 치료에 따른 폐장의 염증성 변화)

  • Jang, Won-Chae;Beom, Min-Sun;Jeong, In-Seok;Hong, Young-Ju;Oh, Bong-Suk
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.879-890
    • /
    • 2006
  • Background: The dysfunction of multiple organs is found to be caused by reactive oxygen species as a major modulator of microvascular injury after hemorrhagic shock. Hemorrhagic shock, one of many causes inducing acute lung injury, is associated with increase in alveolocapillary permeability and characterized by edema, neutrophil infiltration, and hemorrhage in the interstitial and alveolar space. Aggressive and rapid fluid resuscitation potentially might increased the risk of pulmonary dysfunction by the interstitial edema. Therefore, in order to improve the pulmonary dysfunction induced by hemorrhagic shock, the present study was attempted to investigate how to reduce the inflammatory responses and edema in lung. Material and Method: Male Sprague-Dawley rats, weight 300 to 350 gm were anesthetized with ketamine(7 mg/kg) intramuscular Hemorrhagic Shock(HS) was induced by withdrawal of 3 mL/100 g over 10 min. through right jugular vein. Mean arterial pressure was then maintained at $35{\sim}40$ mmHg by further blood withdrawal. At 60 min. after HS, the shed blood and Ringer's solution or 5% albumin was infused to restore mean carotid arterial pressure over 80 mmHg. Rats were divided into three groups according to rectal temperature level($37^{\circ}C$[normothermia] vs $33^{\circ}C$[mild hypothermia]) and resuscitation fluid(lactate Ringer's solution vs 5% albumin solution). Group I consisted of rats with the normothermia and lactate Ringer's solution infusion. Group II consisted of rats with the systemic hypothermia and lactate Ringer's solution infusion. Group III consisted of rats with the systemic hypothermia and 5% albumin solution infusion. Hemodynamic parameters(heart rate, mean carotid arterial pressure), metabolism, and pulmonary tissue damage were observed for 4 hours. Result: In all experimental groups including 6 rats in group I, totally 26 rats were alive in 3rd stage. However, bleeding volume of group I in first stage was $3.2{\pm}0.5$ mL/100 g less than those of group II($3.9{\pm}0.8$ mL/100 g) and group III($4.1{\pm}0.7$ mL/100 g). Fluid volume infused in 2nd stage was $28.6{\pm}6.0$ mL(group I), $20.6{\pm}4.0$ mL(group II) and $14.7{\pm}2.7$ mL(group III), retrospectively in which there was statistically a significance between all groups(p<0.05). Plasma potassium level was markedly elevated in comparison with other groups(II and III), whereas glucose level was obviously reduced in 2nd stage of group I. Level of interleukine-8 in group I was obviously higher than that of group II or III(p<0.05). They were $1.834{\pm}437$ pg/mL(group I), $1,006{\pm}532$ pg/mL(group II), and $764{\pm}302$ pg/mL(group III), retrospectively. In histologic score, the score of group III($1.6{\pm}0.6$) was significantly lower than that of group I($2.8{\pm}1.2$)(p<0.05). Conclusion: In pressure-controlled hemorrhagic shock model, it is suggested that hypothermia might inhibit the direct damage of ischemic tissue through reduction of basic metabolic rate in shock state compared to normothermia. It seems that hypothermia should be benefit to recovery pulmonary function by reducing replaced fluid volume, inhibiting anti-inflammatory agent(IL-8) and leukocyte infiltration in state of ischemia-reperfusion injury. However, if is considered that other changes in pulmonary damage and inflammatory responses might induce by not only kinds of fluid solutions but also hypothermia, and that the detailed evaluation should be study.