Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.0.011

Gene Expression of Detoxification Enzymes in Tenebrio molitor after Fungicide Captan Exposure  

Jang, Ho am (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
Baek, Hyoung-Seon (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
Kim, Bo Bae (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
Kojour, Maryam Ali Mohammadie (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
Patnaik, Bharat Bhusan (P.G. Department of Bio-Sciences and Bio-Technology, Fakir Mohan University)
Jo, Yong Hun (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
Han, Yeon Soo (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 155-163 More about this Journal
Abstract
The application of fungicides is indispensable to global food security, and their use has increased in recent times. Fungicides, directly or indirectly, have impacted insects, leading to genetic and molecular-level changes. Various detoxification mechanisms allow insects to eliminate reactive oxygen species (ROS) toxicity induced by agrochemicals including fungicides. In the present study, we analyzed the mRNA expression levels of detoxifying enzymes in Tenebrio molitor larvae following exposure to non-lethal doses (0.2, 2, and 20 ㎍/µL) of a fungicide captan. Transcripts of peroxidases (POXs), catalases (CATs), superoxide dismutases (SODs), and glutathione-s-transferases (GSTs) were screened from the T. molitor transcriptome database. RT-qPCR analysis showed that TmPOX5 mRNA increased significantly 24 h post-captan exposure. A similar increase was noticed for TmSOD4 mRNA 3 h post-captan exposure. Moreover, the expression of TmCAT2 mRNA increased significantly 24 h post-treatment with 2 ㎍/µL captan. TmGST1 and TmGST3 mRNA expression also increased noticeably after captan exposure. Taken together, these results suggest that TmPOX5 and TmSOD4 mRNA can be used as biomarkers or xenobiotics sensors for captan exposure in T. molitor, while other detoxifying enzymes showed differential expression.
Keywords
Detoxification; Fungicide; mRNA expression;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kobayashi, Y., Nojima, Y., Sakamoto, T., Iwabuchi, K., Nakazato, T., Bono, H., Toyoda, A., Fujiyama, A., Kanost, M.R., Tabunoki, H., 2019. Comparative analysis of seven types of superoxide dismutases for their ability to respond to oxidative stress in Bombyx mori. Sci. Rep. 9, 2170.   DOI
2 Barreda, M., LOpez, F.J., Villarroya, M., Beltran, J., GarciaBaudin, J.M., HernAndez, F., 2006. Residue determination of captan and folpet in vegetable samples by gas chromatography/negative chemical Ionization mass spectrometry. J. AOAC Int. 89, 1080-1087.   DOI
3 Jia, Z., Misra, H.P., 2007. Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFkappaB and caspase-3. Free Radic. Biol. Med. 42, 288-298.   DOI
4 Houbraken, M., Spranghers, T., De Clercq, P., Cooreman-Algoed, M., Couchement, T., De Clercq, G., Verbeke, S., Spanoghe, P., 2016. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chem. 201, 264-269.   DOI
5 Edosa, T.T., Jo, Y.H., Keshavarz, M., Bae, Y.M., Kim, D.H., Lee, Y.S., Han, Y.S., 2020. TmSpz6 is essential for regulating the Immune response to Escherichia coli and Staphylococcus aureus infection in Tenebrio molitor. Insects 11, 105.   DOI
6 Freyre, E.O., Valencia, A.T., Guzman, D.D., Maldonado, I.C., Ledezma, L.E.B., Carrillo, M.F.Z., Escorza, M.A.Q., 2021. Oxidative stress as a molecular mechanism of exposure to organophosphorus pesticides: a review. Curr. Protein Pept. Sci. 22, 890-897.   DOI
7 He, B., Liu, Z., Wang, Y., Cheng, L., Qing, Q., Duan, J., Xu, J., Dang, X., Zhou, Z., Li, Z., 2021. Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicol. Environ. Saf. 228, 112709.   DOI
8 Irato, P., Santovito, G., 2021. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10, 579.   DOI
9 Jang, H.A., Patnaik, B.B., Ali Mohammadie Kojour, M., Kim, B.B., Bae, Y.M., Park, K.B., Lee, Y.S., Jo, Y.H., Han, Y.S., 2021. TmSpz-like plays a fundamental role in response to E. coli but not S. aureus or C. albican Infection in Tenebrio molitor via regulation of antimicrobial peptide production. Int. J. Mol. Sci. 22, 10888.   DOI
10 Lu, Q., Sun, Y., Ares, I., Anadon, A., Martinez, M., Martinez-Larranaga, M.R., Yuan, Z., Wang, X., Martinez, M.A., 2019. Deltamethrin toxicity: a review of oxidative stress and metabolism. Environ. Res. 170, 260-281.   DOI
11 Nazir, A., Mukhopadhyay, I., Saxena, D.K., Siddiqui, M.S., Chowdhuri, D.K., 2003. Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. J. Biochem. Mol. Toxicol. 17, 98-107.   DOI
12 Johnson, R.M., Dahlgren, L., Siegfried, B.D., Ellis, M.D., 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS ONE 8, e54092.   DOI
13 Zhang, J., Lu, A., Kong, L., Zhang, Q., Ling, E., 2014. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J. Biol. Chem. 289, 35891-35906.   DOI
14 Tindwa, H., Jo, Y.H., Patnaik, B.B., Lee, Y.S., Kang, S.S., Han, Y.S., 2015. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor. Dev. Comp. Immunol. 51, 88-98.   DOI
15 Wang, H., Lu, Z., Li, M., Fang, Y., Qu, J., Mao, T., Chen, J., Li, F., Sun, H., Li, B., 2020. Responses of detoxification enzymes in the midgut of Bombyx mori after exposure to low-dose of acetamiprid. Chemosphere 251, 126438.   DOI
16 Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., Lenardo, M., 2006. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. U. S. A. 103, 4952-4957.   DOI
17 Zhou, C., Yang, H., Wang, Z., Long, G.Y., Jin, D.C., 2018. Protective and detoxifying enzyme activity and ABCG subfamily gene expression in Sogatella furcifera under insecticide stress. Front. Physiol. 9, 1890.   DOI
18 Brucker, R.M., Funkhouser, L.J., Setia, S., Pauly, R., Bordenstein, S.R., 2012. Insect innate immunity database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS ONE 7, e45125.   DOI
19 Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., Rezaie, A., 2004. Pesticides and oxidative stress: a review. Med. Sci. Monit. 10, Ra141-147.
20 Barbehenn, R.V., 2002. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. J. Chem. Ecol. 28, 1329-1347.   DOI
21 Everich, R., Schiller, C., Whitehead, J., Beavers, M., Barrett, K., 2009. Effects of captan on Apis mellifera brood development under field conditions in California almond orchards. J. Econ. Entomol. 102, 20-29.   DOI
22 Felton, G.W., Summers, C.B., 1995. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29, 187-197.   DOI
23 Fridovich, I., 1975. Superoxide dismutases. Annu. Rev. Biochem. 44, 147-159.   DOI
24 Seo, G.W., Jo, Y.H., Seong, J.H., Park, K.B., Patnaik, B.B., Tindwa, H., Kim, S.A., Lee, Y.S., Kim, Y.J., Han, Y.S., 2016. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor leads to increased antimicrobial activity in hemocyte and reduces larval survivability. Genes (Basel) 7, 53.   DOI
25 Xin, S., Zhang, W., 2020. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. Arch. Insect Biochem. Physiol. 105, e21737.   DOI
26 Zhao, H., Yi, X., Hu, Z., Hu, M., Chen, S., Muhammad, R.-u.-H., Dong, X., Gong, L., 2013. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS ONE 8, e59527.   DOI
27 Zhu, W., Schmehl, D.R., Mullin, C.A., Frazier, J.L., 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9, e77547.   DOI
28 Kolawole, A.O., Kolawole, A.N., 2014. Insecticides and bio-insecticides modulate the glutathione-related antioxidant defense system of cowpea storage bruchid (Callosobruchus maculatus). Int. J. Insect Sci. 6, IJIS.S18029.
29 Zhou, Y., Chen, X., Teng, M., Zhang, J., Wang, C., 2019. Toxicity effects of captan on different life stages of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 69, 80-85.   DOI
30 Thannickal, V.J., Fanburg, B.L., 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005- 1028.   DOI
31 Kostaropoulos, I., Mantzari, A.E., Papadopoulos, A.I., 1996. Alterations of some glutathione S-transferase characteristics during the development of Tenebrio molitor (Insecta: Coleoptera). Insect Biochem. Mol. Biol 26, 963-969.   DOI
32 Kostaropoulos, I., Papadopoulos, A.I., Metaxakis, A., Boukouvala, E., Papadopoulou-Mourkidou, E., 2001. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Pest Manag. Sci. 57, 501-508.   DOI
33 Seong, J.H., Jo, Y.H., Seo, G.W., Park, S., Park, K.B., Cho, J.H., Ko, H.J., Kim, C.E., Patnaik, B.B., Jun, S.A., Choi, Y.S., Kim, Y.W., Bang, I.S., Lee, Y.S., Han, Y.S., 2018. Molecular cloning and effects of Tm14-3-3ζ-silencing on larval survivability against E. coli and C. albicans in Tenebrio molitor. Genes (Basel) 9, 330.   DOI
34 Piechowicz, B., Sienko, J., Mytych, J., Grodzicki, P., Podbielska, M., Szpyrka, E., Zareba, L., Piechowicz, I., Sadlo, S., 2021. Assessment of risk to honey bees and honey consumers resulting from the insect exposure to captan, thiacloprid, penthiopyrad, and λ-cyhalothrin used in a commercial apple orchard. Environ. Monit. Assess. 193, 129.   DOI
35 Pita-Oliveira, M., Rodrigues-Soares, F., 2021. Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review. Drug Metab. Pers. Ther. in press.
36 Rauf, A., Wilkins, R.M., 2021. Malathion-resistant Tribolium castaneum has enhanced response to oxidative stress, immunity, and fitness. bioRxiv, 2021.2011.2016.468861.
37 Jo, Y.H., Patnaik, B.B., Hwang, J., Park, K.B., Ko, H.J., Kim, C.E., Bae, Y.M., Jung, W.J., Lee, Y.S., Han, Y.S., 2019. Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against Gram-negative bacteria. Sci. Rep. 9, 10138.   DOI
38 Kim, S.G., Jo, Y.H., Seong, J.H., Park, K.B., Noh, M.Y., Cho, J.H., Ko, H.J., Kim, C.E., Tindwa, H., Patnaik, B.B., Bang, I.S., Lee, Y.S., Han, Y.S., 2017. TmSR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor. Insect Biochem. Mol. Biol. 89, 31-42.   DOI
39 Shakir, S.K., Irfan, S., Akhtar, B., Rehman, S.U., Daud, M.K., Taimur, N., Azizullah, A., 2018. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology 27, 919-935.   DOI
40 He, Q.K., Xu, C.L., Li, Y.P., Xu, Z.R., Luo, Y.S., Zhao, S.C., Wang, H.L., Qi, Z.Q., Liu, Y., 2022. Captan exposure disrupts ovarian homeostasis and affects oocytes quality via mitochondrial dysfunction induced apoptosis. Chemosphere 286, 131625.   DOI
41 Kolawole, A.O., Olajuyigbe, F.M., Ajele, J.O., Adedire, C.O., 2014. Activity of the antioxidant defense system in a typical bioinsecticide-and synthetic insecticide-treated cowpea storage beetle Callosobrochus maculatus F. (Coleoptera: Chrysomelidae). Int. J. Insect Sci. 6, IJIS.S19434.
42 Caverzan, A., Piasecki, C., Chavarria, G., Stewart, C.N., Jr., Vargas, L., 2019. Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int. J. Mol. Sci. 20, 1086.   DOI
43 Han, J.B., Li, G.Q., Wan, P.J., Zhu, T.T., Meng, Q.W., 2016. Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. Pestic. Biochem. Physiol. 133, 26-34.   DOI
44 Radhakrishnan, R., Alqarawi, A.A., Abd Allah, E.F., 2018. Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf. 158, 131-138.   DOI
45 Semren, T., Zunec, S., Pizent, A., 2018. Oxidative stress in triazine pesticide toxicity: a review of the main biomarker findings. Arh. Hig. Rada Toksikol. 69, 109-125.   DOI