• Title/Summary/Keyword: Reactive ion beam

Search Result 105, Processing Time 0.033 seconds

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

Nanofabrication of InP/InGaAsP 2D photonic crystals using maskless laser holographic method (레이저 홀로그래피 방법과 반응성 이온식각 방법을 이용한 InP/InGaAsP 광자 결정 구조 제작)

  • 이지면;이민수;이철욱;오수환;고현성;박상기;박문호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.309-312
    • /
    • 2004
  • Two-dimensionally arrayed nanocolumn lattices were fabricated by using double-exposure laser holographic method. The hexagonal lattice was formed by rotating the sample with 60 degree while the square lattice by 90 degree before the second laser-exposure. The size and period of nanocolumns could be controlled accurately from 125 to 145 nm in diameter and 220 to 290 nm in period for square lattice by changing the incident angle of laser beam. The reactive ion etching for a typical time of 30 min using CH$_4$/H$_2$ plasma enhanced the aspect-ratio by more than 1.5 with a slight increase of the bottom width of columns.

A New Approach to Surface Imaging by Nano Secondary Ion Mass Spectrometry

  • Hong, Tae-Eun;Byeon, Mi-Rang;Jang, Yu-Jin;Kim, Jong-Pil;Jeong, Ui-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.105.1-105.1
    • /
    • 2016
  • Many of the complex materials developed today derive their unique properties from the presence of multiple phases or from local variations in elemental concentration. Simply performing analysis of the bulk materials is not sufficient to achieve a true understanding of their physical and chemical natures. Secondary ion mass spectrometer (SIMS) has met with a great deal of success in material characterization. The basis of SIMS is the use of a focused ion beam to erode sample atoms from the selected region. The atoms undergo a charge exchange with their local environment, resulting in their conversion to positive and negative secondary ions. The mass spectrometric analysis of these secondary ions is a robust method capable of identifying elemental distribution from hydrogen to uranium with detectability of the parts per million (ppm) or parts per billion (ppb) in atomic range. Nano secondary ion mass spectrometer (Nano SIMS, Cameca Nano-SIMS 50) equipped with the reactive ion such as a cesium gun and duoplasmatron gun has a spatial resolution of 50 nm which is much smaller than other SIMS. Therefore, Nano SIMS is a very valuable tool to map the spatial distribution of elements on the surface of various materials In this talk, the surface imaging applications of Nano SIMS in KBSI will be presented.

  • PDF

TENSILE BOND STRENGTH OF ALUNMINA CORE TREATED BY ION ASSISTED REACTION (이온보조반응법으로 처리한 알루미나 코아의 인장결합강도에 관한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Boo-Byung;Choi, Won-Kook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.704-723
    • /
    • 2000
  • This study was undertaken to evaluate the tensile bond strength of In-Ceram alumina core treat-ed by ion assisted reaction(IAR). Ion assisted reaction is a prospective surface modification technique without damage by a keV low energy ion beam irradiation in reactive gas environments or reactive ion itself. 120 In-Ceram specimens were fabricated according to manufacturer's directions and divided into six groups by surface treatment methods of In-Ceram alumina core. SD group(control group): sandblasting SL group: sandblasting + silane treatment SC group: sandblasting + Siloc treatment IAR I group: sandblasting + Ion assisted reaction with argon ion and oxygen gas IAR II group: sandblasting + Ion assisted reaction with oxygen ion and oxygen gas IAR III group: sandblasting + Ion assisted reaction with oxygen ion only For measuring of tensile bond strength, pairs of specimens within a group were bonded with Panavia 21 resin cement using special device secured that the film thickness was $80{\mu}m$. The results of tensile strength were statistically analyzed with the SPSS release version 8.0 programs. Physical change like surface roughness of In-Ceram alumina core treated by ion assistad reaction was evaluated by Contact Angle Measurement, Scanning Electron Microscopy, Atomic Force Microscopy; chemical surface change was evaluated by X-ray Photoelectron Spectroscopy. The results as follows: 1. In tensile bond strength, there were no statistically significant differences with SC group, IAR groups and SL group except control group(P<0.05). 2. Contact angle measurement showed that wettability of In-Ceram alumina core was enhanced after IAR treatment. 3. SEM and AFM showed that surface roughness of In-Ceram alumina core was not changed after IAR treatment. 4. XPS showed that IAR treatment of In-Ceram alumina core was enabled to create a new functional layer. A keV IAR treatment of In-Ceram alumina core could enhanced tensile bond strength with resin cement. In the future, this ion assisted reaction may be used effectively in various dental materials as well as in In-Ceram to promote the bond strength to natural tooth structure.

  • PDF

Silicon microstructure prepared by a dry etching (Dry Etching에 의해 제작된 실리콘 미세 구조물)

  • 홍석민;임창덕;조정희;안일신;김옥경
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.242-248
    • /
    • 1997
  • Porous silicons were prepared by dry etching as well as by chemical etching. The latter is a conventional method used by many researchers. Meanwhile, the former is a new method we developed. Also the porous silicon structure was made by E-beam lithography technique. However, due to the limit of this technique, minimum size we could produce was about 0.3 $\mu\textrm{m}$ in diameter on silicon wafer. In a new method, the porous silicon microstructure was fabricated by using Reactive Ion Etching method after covering with diamond powder on 4 inch wafer by using spin coater. In this method, diamond powder acted as a mask. The morphology of samples prepared under many different conditions were analysed be SEM and AFM. And we measured PL spectra for the samples. Based on these results, we observed the structure of a few hundreds $\AA$ in size from porous silicon which was made by dry etching with diamond powder. Also the PL peak for these samples lied around 590 nm compared to 760 nm for chemically etched porous silicon.

  • PDF

Behavior of Hydroxide Ions at the Water-Ice Surface by Low Energy Sputtering Method

  • Kim, S.Y.;Park, E.H.;Kang, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.338-338
    • /
    • 2011
  • The behavior of hydroxide ions on water-ice films was studied by using $Cs^+$ reactive ion scattering (RIS), low energy sputtering (LES) and temperature-programmed desorption (TPD). A $Cs^+$ beam of a low kinetic energy (<100 eV) from $Cs^+$ ion gun was scattered at the film surface, and then $Cs^+$ projectiles pick up the neutral molecules on the surface as $Cs^+$-molecule clusters form (RIS process). In LES process, the preexisting ions on the surface are desorbed by the $Cs^+$ beam impact. The water-ice films made of a thick (>50 BL) $H_2$O layer and a thin $D_2O$ overlayer were controlled in temperatures 90~140K. We prepared hydroxide ions by using Na atoms which proceeded hydrolysis reaction either on the ice film surface or at the interface of the $H_2O$ and $D_2O$ layers.[1] The migration of hydroxide ions from the $H_2O/D_2O$ interface to the top of the film was examined as afunction of time. From this experiment, we show that hydroxide ions tend to reside at the water-ice surface. We also investigated the H/D exchange reactions of $H_2O$ and $D_2O$ molecules mediated by hydroxide ions to reveal the mechanism of migration of hydroxide to the ice surface.

  • PDF

Surface Modification of Polytetrafluoroethylene by 1 keV Argon and Hydrogen Irradiated in Nitrogen and Ammonia Gas Environment (질소와 암모니아 존재하에서 1 keV 에너지의 알곤과 수소 이온 조사에 의한 PTFE(polytetrafluoroethylene)의 표면형상 변화연구)

  • Yeu, Dae-Hwan;Kim, Ki-Hwan;Kang, Dong-Yeob;Kim, Joong-Soo;Koh, Seok-Keun;Kim, Hyun-Joo
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.367-372
    • /
    • 2006
  • Polytetrafluoroethylene (PTFE) surface was modified for improving hydrophilicity by ion irradiation in environmental gas of $N_2$ and $NH_3$, respectively. The water contact angle onto the PTFE surface increased from $104{\circ}$ to over $140{\circ}$ by Ar ion irradiation in $N_2$ gas. In the case of $NH_3$ as environmental gas, there were a slight increase of contact angle from ion dose of $1{\times}10^{15}\;to\;5{\times}10^{15}\;ions/cm^2$, and its dramatic decrease to the value of 35o at the conditions of ion dose higher than $1{\times}10^{16}\;ions/cm^2$. It was found from SEM results that the surface morphology of PTFE was changed into one with filament structure after Ar ion irradiation in $N_2$ gas environments. On the contrary, Ar ion irradiation in $NH_3$ gas condition induced the PTFE surface with network structure. Hydrogen ion irradiation resulted in a little change of PTFE surface morphology, comparing with the case of Ar ion irradiation. The water contact angle of hydrogen ion irradiated PTFE surface in reactive gas decreased with increment of ion dose. Hydrogen ion irradiation could improve hydrophilicity with little change of surface morphology. It might be considered from FT-IR results that the improvement in wettability of PTFE surface by ion irradiation in $N_2$ and $NH_3$ gases could be due to the hydrophilic groups of NHx bonds.

Improving wettability of polyethylene(PE) surface by ion assisted reaction (이온보조반응법에 의한 Polyethylene(PE) 표면의 친수성 증가)

  • 석진우;최성창;장홍규;정형진;최원국;고석근
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.200-205
    • /
    • 1997
  • Surface of polyethylene film was modified by ion assisted reaction in which ion beam is irradiated on polymer in reactive gas environments. Ion (argon and oxygen) beam energy was 1 keV, doses were varied from $1{\times}10^{14}$ to $1{\times}10^{17}$ inons/ $\textrm{cm}^2$, and amount of blowing oxygen from 0 to 4 sccm(ml/min). Wettability was measured by water contact angle measurement, and the surface functionality was analyzed by x-ray photoelectron spectroscopy. The contact angles of water to polyethylene modified by oxygen ion beam only decrease from 95 to degrees, and surface energy was not changed much. The contact angles remarkably decrease to 28 degrees and surface energy increase to 67 erg/ $\textrm{cm}^2$ when the films were modified by argon ion with various ion doses with blowing oxygen gases near the polyethylene surface. Improvement of wettability and surface energy are mainly due to the new functional group formation such as C-O or C=O, which are known as hydrophilic groups from the XPS analysis, and the assisted reaction is very effective to attach oxygen atoms to form functional groups on C-C bond chains of polyethylene.

  • PDF

Preparation of MgO Protective layer for AC PDP by High Energy Particle Bombardment (고속 입자 충격을 도입한 AC PDP의 MgO 보호층 형성에 관한 연구)

  • Kim, Young-Kee;Park, Jung-Tae;Ko, Kwang-Sik;Kim, Gyu-Seob;Cho, Jung-Soo;Park, Chong-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.527-532
    • /
    • 2000
  • The performance of ac plasma display panels (PDP) is influenced strongly by the surface glow discharge characteristics on the MgO thin films. This paper deals with the surface glow discharge characteristics and some physical properties of MgO thin films prepared by reactive RF planar unbalanced magnetron sputtering in connection with ac PDP. The samples prepared with dc bias voltage of -10V showed lower discharge voltage and lower erosion rate byion bombardment than those samples prepared by conventional magnetron sputtering or E-beam evaporation. The main factor that improves the discharge characteristics by bias voltage is considered to be due to the morphology changes or crystal structure of the MgO thin film by ion bombardement during deposition process.

  • PDF

Aluminum Oxide Photonic Crystals Fabricated on Compound Semiconductor (화합물 반도체 기판 위에 제작된 산화 알루미늄 광결정 특성)

  • Choi, Jae-Ho;Kim, Keun-Joo;Jung, Mi;Woo, Duk-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.77-78
    • /
    • 2006
  • We fabricated photonic crystals on GaAs and GaN substrates. After anodizing the aluminium thin film in electrochemical embient, the porous alumina was implemented to the mask for reactive ion beam etching process of GaAs wafer. And photonic crystals in GaN wafer were also fabricated using electron beam nano-lithography process. The coated PMMA thin film with 200 nm-thickness on GaN surface was patterned with triangular lattice and etched out the GaN surface by the inductively coupled plasma source. The fabricated GaAs and GaN photonic crystals provide the enhanced intensities of light emission for the wavelengths of 858 and 450 nm, respectively. We will present the detailed dimensions of photonic crystals from SEM and AFM measurements.

  • PDF