Silicon microstructure prepared by a dry etching

Dry Etching에 의해 제작된 실리콘 미세 구조물

  • Published : 1997.08.01

Abstract

Porous silicons were prepared by dry etching as well as by chemical etching. The latter is a conventional method used by many researchers. Meanwhile, the former is a new method we developed. Also the porous silicon structure was made by E-beam lithography technique. However, due to the limit of this technique, minimum size we could produce was about 0.3 $\mu\textrm{m}$ in diameter on silicon wafer. In a new method, the porous silicon microstructure was fabricated by using Reactive Ion Etching method after covering with diamond powder on 4 inch wafer by using spin coater. In this method, diamond powder acted as a mask. The morphology of samples prepared under many different conditions were analysed be SEM and AFM. And we measured PL spectra for the samples. Based on these results, we observed the structure of a few hundreds $\AA$ in size from porous silicon which was made by dry etching with diamond powder. Also the PL peak for these samples lied around 590 nm compared to 760 nm for chemically etched porous silicon.

기존의 다공질 실리콘 제작 방법인 chemical etching 방법을 병행하면서 새로운 제 작 방법으로서 dry etching 기술을 적용하여 다공질 실리콘을 제작하였다. 또한, 비교를 위 해 E-beam lithography 기술로 실리콘 구조물을 제작하였는데 이 경우 기술상 문제로 약 0.3$\mu\textrm{m}$의 직경을 가진 구조물이 최소의 크기였다. 따라서 새로운 방법으로 4인치 wafer위에 mask 역할을 해주는 다이아몬드 분말을 spin coater로 입힌 후 Reactive Ion Etching(RIE) 방법으로 미세구조의 다공질 실리콘을 제작하였다. 다양한 조건으로 제작된 sample들의 morphology를 SEM과 AFM 등을 이용하여 분석하였고 이 morphology에 대응하는 PL스펙 트럼을 측정하였다. 그 결과, 다이아몬드 분말을 이용한 dry etching방법으로 제작된 다공질 실리콘의 PL peak의 위치가 chemical etching 방법의 다공질 실리콘의 PL peak 위치인 760nm에 비해 높은 에너지인 590nm로 나타났다.

Keywords

References

  1. Appl. Phys. Lett. v.57 no.10 L. T. Canham
  2. Porous Silicon Zhe Chuan FENG;Raphael TSU
  3. J. Appl. Phys. v.72 no.1 Peter C. Searson;John M. Macaulay;Frances M. Ross
  4. J. Electrochem. Soc. v.139 no.11 P. C. Searson;J. M. Macaulay;S. M. Prokes
  5. Appl. Phys. Lett. v.58 no.8 V. Lehmann;U. Gosele
  6. Material Research Society Philippe M. Fauchet
  7. J. Appl. Phys. v.73 no.1 S. M. Prokes
  8. Nature v.384 K. D. Hirschman;L. Tsybeskov;S. P. Duttaguta;P. M. Fauchet
  9. Appl. Phys. Lett. v.64 L. Tsybeskov;P. M. Fauchet
  10. Appl. Phys. Lett. v.58 no.8 V. Lehmann;U. Gosele
  11. Appl. Phys. Lett. v.62 no.10 I. Sagnes;A. Halimaoui;G. Vincent;P. A. Badoz
  12. Phys. Rev. v.B45 G. D. Sanders;Y. Chang
  13. Appl. Phys. Lett. v.62 no.10 J. M. Lavine;S. P. Sawan;Y. T. Shieh;A. J. Bellezza
  14. Appl. Phys. Lett. v.63 no.16 Xi-Mao Bao;Hai-Qiang Yang
  15. Optical Properties of Law Diemnsional Silicon Structures D. C. Bensahel;L. T. Canham;S. Ossicini
  16. Appl. Phys. Lett. v.64 no.2 Yoshihiko Kanemitsu