• 제목/요약/키워드: Reactive flow

검색결과 643건 처리시간 0.024초

Methodology for Determining of Generator Operation Point for Ensuring Voltage Stability Against Generator Faults in Jeju-Haenam HVDC System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Joo, Joon-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.54-60
    • /
    • 2010
  • This paper presents a new algorithm for determining generator operation point for maintaining stability considering generator faults in Jeju-Haenam HVDC system. As the HVDC system consumes reactive power for the transmission of active power substantially, compensation of reactive power is essential. And the HVDC system is operated on frequency control mode. That is to say, the HVDC system almost manages system frequency. Therefore, we recognized that the Jeju system could be unstable if the reactive power consumed by the HVDC is insufficient when out-of-step occurs with large generators. When the solution of power flow analysis does not converge due to the unstable system phenomenon, we have difficulty in establishing countermeasures as the post-fault information is not available. In this paper, for the purpose of overcoming this difficulty in establishing countermeasures, we introduce the CPF(Continuation Power Flow) algorithm. This paper suggests an algorithm for calculating the output limitation of the generator to maintain the stability in case of generator fault in the Jeju system.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

마이크로 정량펌프의 유동해석과 작동성능 평가 (The Flow Analysis and Evaluation of the Peristaltic Micropump)

  • 박대섭;최종필;김병희;장인배;김헌영
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.195-202
    • /
    • 2004
  • This paper presents the fabrication and evaluation of mechanical behavior for a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, the middle plate, the upper plate and the tube that connects inlet and outlet of the pump. The lower plate includes the channel and the chamber, and the plain middle plate are made of glass and actuated by the piezoelectric translator. Channels and a chamber on the lower plate are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The upper plate does the roll of a pump cover and has inlet/outlet/electric holes. Three plates are laminated by the aligner and bonded by the anodic bonding process. Flow simulation is performed using error-reduced finite volume method (FVM). As results of the flow simulation and experiments, the single chamber pump has severe flow problems, such as a backflow and large fluctuation of a flow rate. It is proved that the double-chamber micropump proposed in this paper can reduce the drawback of the single-chamber one.

조류계산을 위한 분리된 UPFC 모형에서의 제한값 해결 (Limit Resolution in the Decoupled UPFC Model for Power Flow)

  • 김태현;서장철;임정욱;문승일;박종근;한변문
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권7호
    • /
    • pp.824-831
    • /
    • 1999
  • This paper presents new methods to resolve the important limits in the decoupled UPFC model for power flow, by which conventional power flow program can be performed with addition of two buses per one UPFC. In order to operate UPFC to the desired value, the series voltage and shunt current of UPFC should be computed. So a method of calculating these by simple equations after power flow is derived. However, the calculated magnitude of series voltage and/or shunt current of UPFC may not be allowed because of the UPFC limit \ulcorner to the ratings of inverters. In this case, the active power and the reactive power (or the voltage magnitude) of UPFC buses should be revised to resolve the limit. This paper proposes the Newton Raphson method to resolve these limits. Particularly, when resolving the series voltage magnitude, three strategies are proposed according to the priority of the active power and the reactive power (or the voltage magnitude).

  • PDF

Modeling, Simulation and Fault Diagnosis of IPFC using PEMFC for High Power Applications

  • Darly, S.S.;Vanaja Ranjan, P.;Justus Rabi, B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.760-765
    • /
    • 2013
  • An Interline Power Flow Controller (IPFC) is a converter based controller which compensates and balance the power flow among multi-lines within the same corridor of the multi-line subsystem. The Interline Power Flow Controller consists of a voltage source converter based Flexible AC Transmission System (FACTS) controller for series compensation. The reactive voltage injected by individual Voltage Source Converter (VSC) can be controlled to regulate active power flow in the respective line in which one VSC regulates the DC voltage, the other one controls the reactive power flows in the lines by injecting series active voltage. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB Simulink and PSPICE. The results obtained by MATLAB are compared with the results obtained by PSPICE and compared with theoretical values.

투수성 반응벽에 의한 오염지하수 복원효과 분석 (Clean-up of Contaminated Groundwater by Permeable Reactive Barrier)

  • 정하익;김상근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.542-547
    • /
    • 2000
  • It has become interested in the concept of permeable barriers for the containment and/or destruction of contaminated groundwater. The purpose of these trench-like barriers is to provide in situ capture and possibly destruction of the contaminant while preserving groundwater flow to uncontaminated zones. For instance, a trichloreethylene(TCE) plume may be contained by a permeable in which reactive iron reduces TCE to ethylene and ethane, compounds which can be easily biodegraded. The objective of this research is to examine the feasibility of using zero-valent iron as a clean-up media in permeable reactive barrier system. A series of laboratory column tests are performed. The concentration of influent and effluent water and the rate of clean up are analysed from these test results. The experimental result shows that the majority of the contamination in groundwater is removed in the reactor. And it shows the corresponding increase in the concentration of chloride ions through the reactor. Results from this study indicate that permeable reactive barrier containing admixtures of zero-valent iron and other materials can effectively clean up groundwater contaminated with organic compounds.

  • PDF

한전 계통에서의 무효전력 부하 평가에 관한 연구 (Reactive Power Loadability in Korean Power System)

  • 윤종수;원종률;윤용범;장병훈;이기선;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1472-1474
    • /
    • 1999
  • This paper proposes the estimation method about how much reactive power can be increased or decreased under prescribed bus voltage limits in non-linear reactive power and power flow equations. The static nonlinear reactive power voltage problem can be formulated using a linear resistive(I-V) network with voltage dependent current sources. Linear programming model is derived for finding bounds on reactive power. This method was applied to future Korean power system and proved its effectiveness.

  • PDF

점근해석을 이용한 확대형 채널 내의 천음속 연소에 관한 연구 (A Study of Transonic Combustion in a Diverging Channel Using Asymptotic Analysis)

  • 이장창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1604-1610
    • /
    • 2004
  • A steady dilute premixed combustion at transonic speeds in a diverging channel is investigated. The model explores the nonlinear interactions between the near-sonic speed of the flow, the small changes in geometry from a straight channel, and the small heat release due to the one-step first-order Arrhenius chemical reaction. The reactive flow can be described by a nonhomogeneous transonic small-disturbance (TSD) equation coupled with an ordinary differencial equation for the calculation of the reactant mass fraction in the combustible gas. The asymptotic analysis results in the similarity parameters that govern the reacting flow problem. The model is used to study transonic combustion at various amounts of incoming, reactant mass, reaction rates, and channel geometries.

  • PDF

신경회로적인 전력조류 계산법에 대한 연구 (Load Flow Calculation by Neural Networks)

  • 김재주;박영문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 1991
  • This paper presents an algorithm to reduce the time to solve Power Equations using a Neural Net. The Neural Net is trained with samples obtained through the conventional AC Load Flow. With these samples, the Neural Net is constructed and has the function of a linear interpolation network. Given arbitrary load level, this Neural Net generates voltage magnitudes and angles which are linear interpolation of real and reactive powers. Obtained voltage magnitudes and angles are substituted to Power Equations, Real and reactive powers are found. Thus, a new sample is generated. This new experience modifies weight matrix. Continuing to modify the weight matrix, the correct solution is achieved. comparing this method with AC Load flow, this method is faster. If we consider parallel processing, this method is far faster than conventional ones.

  • PDF

Design of Passive Treatment Systems for Mine Drainage Waters

  • Jeen, Sung-Wook
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.1-9
    • /
    • 2017
  • Passive treatment systems are commonly used for remediation of mine drainage waters because they do not require continuous chemical inputs and operation. In this study, the selection and design criteria for such systems were evaluated, particularly the two most commonly used ones, i.e., permeable reactive barriers (PRBs) and vertical flow biological reactors (VFBRs). PRBs and VFBRs are operated on the same principles in terms of biochemical reaction mechanisms, whereas differences relate to configuration, engineering, and water management. In this study, each of these systems were described with respect to key design variables, such as metal removal mechanisms and removal rates, effectiveness and longevity, general design and construction, flow capacity, and cost. The information provided from this study could be used as a design guideline when a passive treatment option is considered for potential remediation of a mine site.