• Title/Summary/Keyword: Reactive flow

Search Result 645, Processing Time 0.026 seconds

Static Voltage Stability Analysis using Reactive Power Loss Sensitivity (무효전력 손실감도를 이용한 정적 전압 안정도 해석)

  • Kim, Weon-Kyum;Lee, Bok-Yong;Lee, Sang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.52-55
    • /
    • 1999
  • In recent years, much attention has been paid to the voltage collapse phenomena. There has been reported many cases about the voltage collapse in many countries. These voltage collapse phenomena are known as the event that can occur due to reactive power deficits. This paper proposes an efficient method that can pursue the reactive power loss changes and gives the simple voltage collapse proximity indicator(VCPI) based on the reactive power loss sensitivities using optimal techniques. By comparing reactive power loss sensitivity with active power loss sensitivity, it is also proved that VCPI based on reactive power loss sensitivities is more effective. The developed VCPI is derived from the Jacobian matrix of Load Flow and the computational burden is very low and on-line implementation is possible. The proposed method is applied to a IEEE-14 bus test system and reliable and promising results are obtained.

  • PDF

Satistical Analysis of SiO2 Contact Hole Etching in a Magnetically Enhanced Reactive Ion Etching Reactor

  • Liu, Chunli;Shrauner, B.
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.132-137
    • /
    • 2010
  • Plasma etching of $SiO_2$ contact holes was statistically analyzed by a fractional factorial experimental design. The analysis revealed the dependence of the etch rate and DC self-bias voltage on the input factors of the magnetically enhanced reactive ion etching reactor, including gas pressure, magnetic field, and the gas flow rates of $CHF_3$, $CF_4$, and Ar. Empirical models of the DC self-bias voltage and etch rate were obtained. The DC self-bias voltage was found to be determined mainly by the operating pressure and the magnetic field, and the etch rate was related mainly to the pressure and the flow rates of Ar and $CHF_3$.

Shape Control and Characterization of One-dimensional ZnO Nanostructures through the Synthesis Procedure (합성절차에 따른 1차원 ZnO 나노구조의 형태조절과 특성평가)

  • Kong, Bo-Hyun;Park, Tae-Eun;Cho, Hyung-Koun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • The one-dimensional ZnO nanostructures prepared through thermal evaporation under various cooling down procedures by changing the flow rates of the carrier gas and the reactive gas were investigated. The nanorod structures were changed into the nanonail types with a broad head through the reduction of the flow rate of the carrier gas. The decrease of the reactive gas reduced the length of the nail heads due to the limited mass transport of reactive gas. The intensity ratio of the ultraviolet emission/green emission of photoluminescence was proportional to the length of the broad head showing a larger surface area. The vertically aligned nanostructures were grown along the [0001] direction of ZnO regardless of the aligned directions. The crystal direction of the nanostructures was determined by that of the initial ZnO crystal.

Minimizing Power Transmission Losses by Optimum Control of Reactive Power Flow (무효전력조류의 최적제어에 의한 전력손실 최소화 연구)

  • 김준현;유석구
    • 전기의세계
    • /
    • v.28 no.10
    • /
    • pp.41-47
    • /
    • 1979
  • The paper develops a method of minimizing power transmission losses by optimum control of reactive power flow. In the past, because the optimizing method considers as the first step the minimization of node voltage deviations and as the second step the minimization of transmission losses within the system, the calculating procedure was more complex and difficult to handle. In this paper, a new computing method for real time control on a digital computer is described which aims at a coordinated use of reactive power sources and voltage regulating devices. The power transmission losses are minimized by a gradient method while satisfying the constrained system voltage conditions and sensitivity parameters are the basis of the method.

  • PDF

Reactive Ion Etching of Amorphous Semiconductor and Insulator (비정질 반도체 및 절연체의 Reactive Ion Etching)

  • Hur, Chang-Wu;Lee, Kyu-Chung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.985-989
    • /
    • 2005
  • 본 논문에서는 비정질 반도체 및 절연체의 etching을 RIE를 사용하여 etching 조건을 결정하는 요인(chamber pressure, gas flow rate, rf power, 온도 등)들을 변화시켜 실험하였고, gas는 비정질 실리콘 박막의 reactive ion etching에 주로 사용되는 $CF_4,\; CF_4+O_2,\;CCl_2F_2,\;CHF_3\;gas$ 등을 사용하였다. 여기서 실리콘 박막의 식각은 $CF_4,\;CCl_2F_2,\;gas$를 그리고 insulator 막인 SiNx 박막의 식각은 $CF_4+O_2,\;CHF_3\;gas$를 사용하였다. 특히 $CCl_2F_2$ gas는 insulator 막인 SiNx 박막과의 식각 selectivity가 6:1로서 우수하기 때문이다. 정확한 control에 의해 높은 수율 (Yield) 을 얻을 수 있어 cost를 절감할 수 있다.

  • PDF

Graphical Representation of the Instantaneous Compensation Power Flow for Single-Phase Active Power Filters

  • Jung, Young-Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1380-1388
    • /
    • 2013
  • The conventional graphical representation of the instantaneous compensation power flow for single-phase active power filters(APFs) simply represents the active power flow and the reactive power flow which flowing between the power source and the active filter / the load. But, this method does not provide the information about the rectification mode and the compensation mode of APFs, especially, the loss for each mode was not considered at all. This is very important to understand the compensation operation characteristics of APFs. Therefore, this paper proposes the graphical representation of the instantaneous compensation power flow for single-phase APFs considering the instantaneous rectification mode and the instantaneous inversion mode. Three cases are verified in this paper - without compensation, with compensation of the active power 'p' and the fundamental reactive power 'q', and with compensation of only the distorted power 'h'. To ensure the validity of the proposed approach, PSIM simulation is achieved. As a result, we could confirm that the proposed approach was easy to explain the instantaneous compensation power flow considering the instantaneous rectification mode and the instantaneous inversion mode of APFs, also, Total Harmonic Distortion(THD)/Power Factor (P.F) and Fast Fourier Transform(FFT) analysis were compared for each case.

CPN Management Model and Network Access Flow/Congestion Control in ATM Network (CPN의 관리 모델과 망 엑세스 흐름/혼잡 제어)

  • 김양섭;권혁인;김영찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2096-2105
    • /
    • 1998
  • As there can be coincident bursts which may result in congetsion in a node of ATM network, reactive flow control schemes are required to guarantee user's Quality of Service. But, the high speed characteristics of ATM networks make it difficult to control source transmission rate in reacting to congestions in intermediate nodes. Therefore, flow control in Customer Premise Network may be more efficient than end-to-end flow control. In this paper, we propose a management model for flow ontrol in CPN and new Network Access Flow/Congestsion control scheme to utilize efficiently Virtual Path Connection.

  • PDF

Determining the Reference Voltage of 345 kV Transmission System Considering Economic Dispatch of Reactive Power (무효전력 경제급전을 고려한 345㎸ 송전계통의 기준 전압 설정 방법)

  • Hwang, In-Kyu;Jin, Young-Gyu;Yoon, Yong-Tae;Choo, Jin-Boo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.611-616
    • /
    • 2018
  • In the cost based pool market in Korea, there is no compensation of reactive power because the fuel cost for reactive power is relatively low compared to that of active power. However, the change of energy paradigm in the future, such as widespread integration of distributed renewable energy source, will prevent the system operator from mandating the reactive power supply without any compensation. Thus, in this study, we propose the reference voltage of the 345 kV transmission system that minimizes the reactive power supply. This is closely related to the economic dispatch of reactive power aiming at minimizing the compensation cost for the reactive power service. In order to verify the effectiveness of the proposed reference voltage, the simulations are performed using the IEEE 14 bus system and the KEPCO real networks. The simulation results show that a voltage lower than the current reference value is recommended to reduce the reactive power supply and also suggest that the current voltage specification for the 345 kV system needs to be reviewed.

A Study on the Characteristics of Flow and Reactive Pollutants' Dispersion in Step-up Street Canyons Using a CFD Model (CFD 모델을 이용한 체승 도시협곡의 흐름과 반응성 대기오염물질 확산 특성 연구)

  • Kim, Eun-Ryoung;Park, Rokjin J.;Lee, Dae-Geun;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.473-482
    • /
    • 2015
  • In this study, street canyons with a higher downwind building (so called, step-up street canyons) are considered for understanding characteristics of flow and reactive pollutants' dispersion as a basic step to understand the characteristics in wider urban areas. This study used a CFD_NIMR_SNU coupled to a chemistry module just including simple $NO_X-O_3$ photochemical reactions. First, flow characteristics are analyzed in step-up street canyons with four aspect ratios (0.33, 0.47, 0.6, 0.73) defined as ratios of upwind building heights to downwind building height. The CFD_NIMR_SNU reproduced very well the main features (that is, vortices in the street canyons) which appeared in the wind-tunnel experiment. Wind speed within the street canyons became weak as the aspect ratio increased, because volume of flow incoming over the upwind building decreased. For each step-up street canyon, chemistry transport model was integrated up to 3600 s with the time step of 0.5 s. The distribution patterns of $NO_X$ and $O_3$ were largely dependent on the mean flow patterns, however, $NO_X$ and $O_3$ concentrations were partly affected by photochemical reactions. $O_3$ concentration near the upwind lower region of the street canyons was much lower than background concentration, because there was much reduction in $O_3$ concentration due to NO titration there. Total amount of $NO_X$ in the street canyons increased with the aspect ratio, resulting from the decrease of mean wind intensity.

Structural, Morphological, and Optical Properties of AlN Thin Films Subjected to Oxygen Flow Ratio (산소 유량비 변화에 따른 AlN 박막의 구조, 표면 및 광학적 특성)

  • Cho, Shin-Ho;Kim, Moon-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.287-292
    • /
    • 2010
  • We have investigated the effects of oxygen flow ratios on the structural, morphological, and optical properties of AlN thin films grown by using radio-frequency reactive magnetron sputtering. The AlN thin films were deposited at $300^{\circ}C$ of substrate temperature, and the reactive gas were supplied with both nitrogen and oxygen. The oxygen flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 0%, 10%, 15%, 20%, 25%, and 30%. The structural, morphological, and optical properties of the deposited AlN thin films were examined by using X-ray diffractometer, scanning electron microscopy, and ultraviolet-visible spectrophotometer. The AlN thin film grown at 10% of oxygen flow ratio indicated an average transmittance of 91.3% in the wavelength range of 350~1,100 nm and an optical band gap of 4.30 eV. The experimental results suggest that AlN thin films can be deposited optionally by varying the oxygen flow ratio.