• Title/Summary/Keyword: Reactive Powder concrete

Search Result 33, Processing Time 0.017 seconds

Correlation Between Tensile Strength and Compressive Strength of Ultra High Strength Concrete Reinforced with Steel Fiber (초고강도 강섬유 보강 콘크리트의 인장강도와 압축강도 사이의 상관관계에 관한 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.253-263
    • /
    • 2015
  • Ultra-high strength concrete which have 100 MPa compressive strength or higher can be developed applying RPC(Reactive Powder Concrete). Preventing brittle failure under compression and tension, ultra-high strength concrete usually use the steel fibers as reinforcements. For the effective use of steel fiber reinforced ultra-high strength concrete, estimation of tensile strength is very important. However, there are insufficient research results are available with no relation between them. Therefore, in this study, correlation between compressive strength and tensile strength of ultra-high strength concrete was investigated by test and statistical analysis. According to test results, increasing tendency of tensile strength was also shown in the range of ultra-high strength. Evaluation of test results of this study and collected test results were carried out. Using 284 splitting test specimens and 265 flexural test specimens, equations suggested by previous researchers cannot be applied to ultra-high strength concrete. Therefore, using database and test results, regression analysis was carried out and we suggested new equation for splitting and flexural tensile strength of steel fiber reinforced ultra-high strength concrete.

Mechanical Characteristics of Ultra High Strength Concrete with Steel Fiber Under Uniaxial Compressive Stress (강섬유로 보강된 초고강도 콘크리트의 일축압축 상태에서의 기계적 특성)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.521-530
    • /
    • 2015
  • Design of fiber reinforced ultra-high strength concrete members should be verified with analytical or experimental methods for safety. Members with compressive strength larger than limitation of current design code usually be designed with analytical verification using stress-strain relation of concrete and reinforcements. For this purpose, mechanical characteristics of steel fiber reinforced ultra-high strength concrete were defined under uniaxial compression. Mix proportions of test specimens were based on reactive powder concrete and straight steel fibers were mixed with different volume fraction. Compressive strength of matrix were distributed from 80 MPa to 200 MPa. Effect of fiber inclusion were investigated : increase of compressive strength of concrete, elastic modulus and strain corresponding to peak stress. For the wide range application of investigation, previously tested test specimens were collected and used for investigation and estimation equation. Based on the investigation and evaluation of previous research results and estimation equation of mechanical characteristics of concrete, regression equations were suggested.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.