• 제목/요약/키워드: Reactive Loading

검색결과 73건 처리시간 0.023초

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

산성광산배수로 오염된 지하수 정화용 투수성 반응벽체 반응매질 선정 기초실험 (Experiment of Reactive Media Selection for the Permeable Reactive Barrier Treating Groundwater contaminated by Acid Mine Drainage)

  • 지상우;정영욱
    • 자원환경지질
    • /
    • 제38권3호
    • /
    • pp.237-245
    • /
    • 2005
  • 중금속으로 오염된 산성 지하수의 현장 정화방법으로 투수성반응벽체 기술의 적용 가능성을 평가하기 위하여 반응매질 선정을 위한 실내실험을 수행하였다. 처리대상 오염지하수로 이용한 임기광산 폐석적치장 침출수는 낮은 pH와 높은 금속농도를 갖는다(산도부하량으로 65 kg $CaCO_3$/일, 금속부하량(Fe+Al+Mn)으로 11.6kg/일). 이러한 특성의 오염지하수는 반응매질로 유기탄소 혼합물을 이용하여 황산염환원 반응에 의한 처리가 가능할 것으로 판단된다. 다섯 가지 서로 다른 배합비를 갖는 버섯퇴비, 소나무 바크, 석회석의 혼합 반응매질을 이용한 배치실험 결과를 통해 보면 투수성반응벽체를 적용할 경우 산도부하량은 12.3kg $CaCO_3$/일, 금속부하량은 3.3kg/일로 줄일 수 있다. 대상 지하수의 낮은 pH와 높은 금속부하량을 고려하여 무기탄소를 위주로 한 완충용 반응벽체를 먼저 두고, 이어서 유기탄소 혼합물로 구성되는 반응벽체로 황산염 환원을 유도하는 방법 적용한다면 보다 효과적인 광산배수에 대한 정화를 기대할 수 있을 것이다.

Thickness stretching and nonlinear hygro-thermo-mechanical loading effects on bending behavior of FG beams

  • Faicel, Khadraoui;Abderahmane, Menasria;Belgacem, Mamen;Abdelhakim, Bouhadra;Fouad, Bourada;Soumia, Benguediab;Kouider Halim, Benrahou;Mohamed, Benguediab;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.783-798
    • /
    • 2022
  • This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.

배전선로에서 전압측정치의 오차보정을 통한 정확한 구간부하 추정 방법 (Accurate Section Loading Estimation Method Based on Voltage Measurement Error Compensation in Distribution Systems)

  • 박재형;전철우;임성일
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.43-48
    • /
    • 2016
  • Operational applications such as service restoration, voltage control and protection coordination are calculated based on the active and reactive power loading of the sections in the distribution networks. Loadings of the sections are estimated using the voltage and current measured from the automatic switches deployed along the primary feeders. But, due to the characteristics of the potential transformer attached to the switches, accuracy of the voltage magnitude is not acceptable to be used for section loading calculation. This paper proposes a new accurate section loading estimation method through voltage measurement error compensation by calculating voltage drop of the distribution line. In order to establish feasibility of the proposed method, various case studies based on Matlab simulation have been performed.

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

전압안정성 분석 및 제어에 관한 연구 (A Study on the Analysis and Control of Voltage Stability)

  • 장수형;김규호;유석구
    • 대한전기학회논문지
    • /
    • 제43권6호
    • /
    • pp.869-876
    • /
    • 1994
  • This paper presents an efficient method to calculate voltage collapse point and to avoid voltage instability. To evaluate voltage stability in power systems, it is necessary to get critical loading points. For this purpose, this paper uses linear programming to calculate efficiently voltage collapse point. Also, if index value becomes larger than given threshold value, voltage stability is improved by compensation of reactive power at selected bus. This algorithm is verified by simulation on the IEEE 14-bus sample system.

  • PDF

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.

손실감도지표의 전력계통 적용 (Applications of System Loss Sensitivity Index to Power Systems)

  • 이상중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.56-61
    • /
    • 2000
  • In the paper, the system loss sensitivity index that implies the incremental system loss with respect to the change of bus power is derived using optimization technique. The index λ reaches $\infty$ at critical loading point and can be applied to actual power systems for following purposes. 1) Evaluation of system voltage stability 2)Optimal investment of reactive power focused on minimizing system loss and maximizing system voltage stability 3)Optimal re-location of reactive power focused on minimizing system loss and maximizing system voltage stability 4)Optimal load shedding in case of severe system contingency focused on minimizing system loss and maximizing system voltage stability. Case studies for each application have proved their effectiveness.

  • PDF