• Title/Summary/Keyword: Reactive CVD

Search Result 64, Processing Time 0.035 seconds

Subtle inflammation: a possible mechanism of future cardiovascular risk in obese children

  • Sontichai, Watchareewan;Dejkhamron, Prapai;Pothacharoen, Peraphan;Kongtaweelert, Prachya;Unachak, Kevalee;Ukarapol, Nuthapong
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.11
    • /
    • pp.359-364
    • /
    • 2017
  • Purpose: The risk of cardiovascular disease (CVD) has been shown to be associated with systemic inflammation in obese adults with metabolic syndrome (MetS). The aims of this study were to evaluate the prevalence of MetS and its relation to inflammatory markers in obese Thai children. Methods: A cross-sectional study was conducted. Children with history of endogenous obesity, chronic diseases, drug ingestion, and any acute illness within 2 weeks prior to enrollment were excluded. Their fasting blood glucose (FBG) levels, oral glucose tolerance tests, insulin, lipid profiles, and selected inflammatory markers, including interleukin-6, tumor necrosis factor-alpha, and high-sensitivity C-reactive protein (hs-CRP) levels, were tested. Results: In this study, 58 obese Thai children (female, 20; male, 38) with a mean body mass index z score of $5.1{\pm}2.2$ were enrolled. The prevalence of MetS and prediabetes was 31% and 17.2%, respectively. None of the children had diabetes. FBG levels, 2-hour glucose levels, and lipid profiles were not statistically different between those with and without MetS. However, obese children with MetS had higher insulin levels and homeostasis model assessment of insulin resistance values. Elevated hs-CRP levels were found in 69% of the cases, although it was not statistically different between the 2 groups. Conclusion: We described a substantial prevalence of MetS in Thai obese children. Regardless of MetS status, two-thirds of the obese children had elevated hs-CRP level, indicating subtle ongoing inflammatory process. This chronic inflammation feasibly predisposes them to CVD in the future, even in children without MetS.

Electrical characteristics of SiC thin film charge trap memory with barrier engineered tunnel layer

  • Han, Dong-Seok;Lee, Dong-Uk;Lee, Hyo-Jun;Kim, Eun-Kyu;You, Hee-Wook;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.255-255
    • /
    • 2010
  • Recently, nonvolatile memories (NVM) of various types have been researched to improve the electrical performance such as program/erase voltages, speed and retention times. Also, the charge trap memory is a strong candidate to realize the ultra dense 20-nm scale NVM. Furthermore, the high charge efficiency and the thermal stability of SiC nanocrystals NVM with single $SiO_2$ tunnel barrier have been reported. [1-2] In this study, the SiC charge trap NVM was fabricated and electrical properties were characterized. The 100-nm thick Poly-Si layer was deposited to confined source/drain region by using low-pressure chemical vapor deposition (LP-CVD). After etching and lithography process for fabricate the gate region, the $Si_3N_4/SiO_2/Si_3N_4$ (NON) and $SiO_2/Si_3N_4/SiO_2$ (ONO) barrier engineered tunnel layer were deposited by using LP-CVD. The equivalent oxide thickness of NON and ONO tunnel layer are 5.2 nm and 5.6 nm, respectively. By using ultra-high vacuum magnetron sputtering with base pressure 3x10-10 Torr, the 2-nm SiC and 20-nm $SiO_2$ were successively deposited on ONO and NON tunnel layers. Finally, after deposited 200-nm thick Al layer, the source, drain and gate areas were defined by using reactive-ion etching and photolithography. The lengths of squire gate are $2\;{\mu}m$, $5\;{\mu}m$ and $10\;{\mu}m$. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer, E4980A LCR capacitor meter and an Agilent 81104A pulse pattern generator system. The electrical characteristics such as the memory effect, program/erase speeds, operation voltages, and retention time of SiC charge trap memory device with barrier engineered tunnel layer will be discussed.

  • PDF

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

FABRICATION OF Nb/Al SUPERCONDUCTING TUNNEL JUNCTION (Nb/Al SUPERCONDUCTING TUNNEL JUNCTION의 제작)

  • Cho, Sung-Ik;Park, Young-Sik;Park, Jang-Hyun;Lee, Yong-Ho;Lee, Sang-Kil;Kim, Sug-Whan;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.481-492
    • /
    • 2004
  • We report the successful fabrication and I-V curve superconductivity test results of the Nb/Al-based superconducting tunnel junctions. STJs with side-lengths of 20, 40, 60 and $80{\mu}m$ were fabricated by deposition of polycrystalline Nb/Al/AlOx/Al/Nb 5-layer thin films incorporated on a 3-inch Si wafer. STJ was designed by $Tanner^{TM}$ L-Edit 8.3 program, and fabricated in SQUID fabrication facility, KRISS. S-layer STJ thin-films were fabricated using UV photolithography, DC magnetron sputtering, Reactive ion etching, and CVD(Chemical Vapor Deposition) techniques. Superconducting state test for STJ was succeeded in 4K with liquid helium cooling system. Their performance indicators such ie energy gap, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor were measured from I-V curve. Fabricated Nb/Al STJ shows $11\%$ higher FWHM energy resolution than genuine Nb STJ.

Dronedarone hydrochloride enhances the bioactivity of endothelial progenitor cells via regulation of the AKT signaling pathway

  • Zhang, Jian;Le, Thi Hong Van;Rethineswaran, Vinoth Kumar;Kim, Yeon-Ju;Jang, Woong Bi;Ji, Seung Taek;Ly, Thanh Truong Giang;Ha, Jong Seong;Yun, Jisoo;Cheong, Jae Hun;Jung, Jinsup;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.459-466
    • /
    • 2021
  • Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

The effect of reactive gases on the propertise of TiCN layer synthesized by Arc Ion plating process (Arc Ion Plating 방식에 의한 TiCN 증착시 반응가스가 코팅층에 미치는 영향)

  • Seo, Chang-Min;Kim, Chang-Geun;;Yu, Im-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.56-68
    • /
    • 1997
  • This work was intended to study the effect of a partial pressure ratio and a total pressure of reactive gases on the properties of TiC$_{x}$N$_{1-x}$ . coated layer. In this regard, various TiC$_{x}$N$_{1-x}$ coatings were synthesized with C2112 and N2 Mixture gas of different compositions by Arc Ion Plating process which has been highlighted for an industrial purpose. It was revealed from colors and X-ray diffraction patterns that the concentration of carbon of a TiC$_{x}$N$_{1-x}$ coating increases with a partial pressure ratio (PC$_{2}$H$_{2}$/PN$_{2}$) as well as a total pressure Of $C_{2}$H$_{2}$ and N$_{2}$ mixture gas. Accordingly, the hardness of TiC$_{x}$N$_{1-x}$ coated layer increased but the adhesion to the substrate of SKH 51 was degraded. On the other hand, the deposition rate was independent of a partial pressure ratio and a total pressure of mixture gas. It was found that a uniform gas distribution is critical for an industrial application since the composition of a coating depends strongly on the location of a substrate inside of the furnace. As a result of milling tests with different TiC$_{x}$N$_{1-x}$ coated end mills, the one which has a low carbon concentration was better than others studied in this work.d in this work.

  • PDF

c-BN 박막의 박리특성 향상에 관한 연구

  • 이성훈;변응선;이건환;이구현;이응직;이상로
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.124-124
    • /
    • 2000
  • 다이아몬드에 버금가는 높은 경도뿐만 아니라 높은 화학적 안정성 및 열전도성 등 우수한 물리화학적 특성을 가진 입방정 질화붕소(cubic boron nitride)는 마찰.마모, 전자, 광학 등의 여러 분야에서의 산업적 응용이 크게 기대되는 재료이다. 특히 탄화물형성원소에 대해 안정하여 철계금속의 가공을 위한 공구재료로의 응용 또한 크게 기대된다. 이 때문에 각종의 PVD, CVD 공정을 이용하여 c-BN 박막의 합성에 대한 연구가 광범위하게 진행되어 많은 성공사례들이 보고되고 있다. 그러나 c-BN 박막의 유용성에도 불구하고 아직 실제적인 응용이 이루어지지 못한 것은 c-BN 박막의 증착직후 급격한 박리현상 때문이다. 본 연구에서는 평행자기장을 부가한 ME-ARE(Magnetically Enhanced Activated Reactive Evaporation)법을 이용한 c-BN 박막의 합성에서 적용한 증착공정 인자들의 변화에 따른 박리특성 고찰과 함께 다층박막화 및 제 3원소 혼입 방법을 적용하여 박리특성 향상 정도를 조사하였다. BN 박막합성은 전자총에 의해 증발된 보론과 (질소+아르곤) 플라즈마의 활성화반응증착(Activated Reactive Evaporation)에 의해 이루어졌다. 기존의 ARE 장치와 달리 열음극(got cathode)과 양극(anode) 사이에 평행자기장을 부가하여 플라즈마의 증대시켜 반응효율을 높였다. 합성실험용 모재로는 p-type으로 도핑된 (100) Si웨이퍼를 30$\times$40mmzmrl로 절단 후, 10%로 희석된 완충불산용액에 10분간 침적하여 표면의 산화층을 제거한 후 사용하였다. 박막실험실에서의 주요공정변수는 기판바이어스 전압, discharge 전류, Ar/N2가스유량비이었다. 합성된 박막의 결정성 분석을 FTIR을 이용하였으며, BN 박막의상 및 미세구조관찰을 위해 투과전자현미경(TEM;Philips EM400T) 분석을 병행하였고, 박막의 기계적 물성 평가를 위해 미소경도를 측정하였다. 박리특성의 고찰은 대기중에서의 자발적 박리가 일어나 90%이상의 박리가 진행된 시점까지의 시간을 측정하였고, 증착직후 박막의 잔류응력 변화와 연관하여 고찰해 보았다.

  • PDF

UHV-ECRCVD를 이용한 SiGe 저온에피성장 및 임계두께에 관한 연구

  • 주성재;황석희;황기현;윤의준;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.196-201
    • /
    • 1995
  • 새로운 증착방법인 UHV-ECRCVD를 이용하여 기판온도 $440^{\circ}C$의 저온에서 격자이온이 일어나지 않고 완벽한 정합상태를 유지하고 있는 무전위 SiGe 에피박막을 성장시켰다. 박막의 두께는 기계적 평형이론(mechanical equilibrium theory)인 Mattews-Blakeslee 임계두께를 초과하였으며, 따라서 본 연구에서 사용하는 낮은 기판온도에 의해 격자이완이 억제되고 있음을 알았다. 한편 성장시에 가해주는 GeH4의 유량이 증가함에 따라 박막내에 GeH4으로부터 생성된 무거운 ion의 기판입사량이 증가하여 격자손상(lattice damage)에 의한 결함이 증가하므로 높은 Ge 함량을 갖는 무전위 SiGe 에피박막을 얻을 수 없었다. 그러나 전체압력을 증가시켜서 에피층을 성장시키면 격자손상에 의한 결함은 생성되지 않았으며, 따라서 전체압력을 증가시키면 높은 Gegkafid을 갖는 무전위 SiGe 에피박막을 성장시킬 수 있을 것이라고 생각된다. 이것은 전체압력 증가로 인해 ECR 플라즈마 안의 전자온도가 감소하여 성장을 주도하는 활성종(reactive species)이 ion에서 radical 로 바뀌기 때문이라고 추정하였다. 본 연구에서는 박막의 Ge 함량이 증가함에 따라 에피층의 성장속도가 증가하는 현상을 관찰하였다. 따라서 ECR 플라즈마를 사용하는 본 연구에서도 표면에서의 수소탈착이 성장속도결정단계임을 알 수 있었다. 한편 인입률(incorporation ratio)은 1에 근접하였으며, 이것은 플라즈마에 의한 원료기체의 분해과정이 thermal CVD와는 달리 무차별적으므로 SiH4과 GeH4의 분해효율이 크게 다르지 않기 때문이라고 추정하였다.

  • PDF

SAW characteristics of AlN films sputtered on SiC buffer layer for harsh environment applications (SiC 버퍼충위 스퍼터링법으로 증착된 극한 환경용 AlN박막의 SAW 특성)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.273-273
    • /
    • 2008
  • This paper describes the frequency response of two-port surface acoustic wave (SAW) resonator made of 002-polycrystalline aluminum nitride (AlN) thin film on 111-poly 3C-SiC buffer layer. In there, Polycrystalline AlN thin films were deposited on polycrystalline 3C-SiC buffer layer by pulsed reactive magnetron sputtering system, the polycrystalline 3C-SiC was grown on $SiO_2$/Si sample by CVD. The obtained results such as the temperature coefficient of frequency (TCF) of the device is about from 15.9 to 18.5 ppm/$^{\circ}C$, the change in resonance frequency is approximately linear (30-$150^{\circ}C$), which resonance frequency of AlN/3C-SiC structure has high temperature stability. The characteristics of AlN thin films grown on 3C-SiC buffer layer are also evaluated by using the XRD, and AFM images.

  • PDF

The Characteristics of Plasma Polymerized Carbon Hardmask Film Prepared by Plasma Deposition Systems with the Variation of Temperature

  • Yang, J.;Ban, W.;Kim, S.;Kim, J.;Park, K.;Hur, G.;Jung, D.;Lee, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.1-381.1
    • /
    • 2014
  • In this study, we investigated the deposition behavior and the etch resistivity of plasma polymerized carbon hardmask (ppCHM) film with the variation of process temperature. The etch resistivity of deposited ppCHM film was analyzed by thickness measurement before and after direct contact reactive ion etching process. The physical and chemical properties of films were characterized on the Fourier transform infrared (FT-IR) spectroscope, Raman spectroscope, stress gauge, and ellipsometry. The deposition behavior of ppCHM process with the variation of temperature was correlated refractive index (n), extinction coefficient (k), intrinsic stress (MPa), and deposition rate (A/s) with the hydrocarbon concentration, graphite (G) and disordered (D) peak by analyzing the Raman and FT-IR spectrum. From this experiment we knew an optimal deposition condition for structure of carbon hardmask with the higher etch selectivity to oxide. It was shown the density of ppCHM film had 1.6~1.9 g/cm3 and its refractive index was 1.8~1.9 at process temperature, $300{\sim}600^{\circ}C$. The etch selectivity of ppCHM film was shown about 1:4~1:8 to undoped siliconoxide (USG) film (etch rate, 1300 A/min).

  • PDF