• 제목/요약/키워드: Reaction-bonded sintering

검색결과 53건 처리시간 0.022초

점토 결합 SiC 소결체의 마찰 마모 특성 (Tribological Properties of Clay Bonded SiC)

  • 한상준;이경희;이재한;김홍기
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.1027-1032
    • /
    • 1995
  • SiC had been widely applied for mechanical sealing as a sealing material. SiC sintering is commonly made of reaction sintering, presureless sintering, and hot isostatic pressing (HIP) sintering. In this investigation, however, clay bonded sintering was used to avoide any complications of the special sintering methods as mentioned above. In order to prevent harmful SiC oxidation in the clay bonded sintering, clay and frit were used to form the SiC oxidation protecting layer and graphite was added to provide high solid lubricity. As a result, the material with 6% clay (clay 5.4% and frit 0.6%) and 2~4% graphite (45 mesh) sintered at 140$0^{\circ}C$ for 3 hours, showed the following physical properties; porosity 6%, static friction coefficient 0.15, kinematic coefficient 0.1,. and specific wear rate 4.8$\times$10-8 $\textrm{mm}^2$kgf-1. On the other hand, the flexural strength was 900kgf/$\textrm{cm}^2$. This tribological characteristic properties were similar to those of the reaction sintered SiC except the flexural strength.

  • PDF

반응소결 탄화규소에서 실리콘의 침윤향상 (Silicon Melt Infiltration of Reaction-Bonded Silicon Carbide)

  • 신현익;김주선;이종호;김긍호;송휴섭;이해원
    • 한국세라믹학회지
    • /
    • 제39권7호
    • /
    • pp.693-698
    • /
    • 2002
  • 반응소결 탄화규소의 잔류 실리콘 양을 최소화하기 위해 3성분계 탄화규소 분말을 혼합하여 최밀 충전 반음소결 탄화규소를 제조하였다. 기지상의 충전밀도 증가로 인해 반응소결 중 실리콘의 불완전 침윤이 발생하였으며, 이로 인한 잔류 기공은 조대 탄화규소 입자의 표면을 따라 존재함을 확인하였다. 불완전 침윤은 승온 중 분해되지 않고 남은 산화물이 실리콘의 용융 온도 이상에서 분해되어 생긴 고립기공에 의한 것으로 확인되었다. 기지상의 표면에 존재하리라 여겨지는 산화물을 제거하기 위해 침윤전 열처리 및 부식처리를 통해 완전침윤을 달성하였다.

Ni/Ti 금속침투에 의한 반응결합소결 TiC계 복합체의 미세구조 및 기계적 특성 (Microstructure and Mechanical Properties of Reaction-Bonded Sintering TiC-Based Composite Prepared by Ni-Ti Metal Infiltration)

  • 한인섭;우상국;김홍수;양준환;정윤중
    • 한국세라믹학회지
    • /
    • 제33권9호
    • /
    • pp.995-1002
    • /
    • 1996
  • The TiC-(Ni/Ti) composites were prepared by reaction bonding between TiC preforms and the melted mixture of Ni/Ti metal the atomic ratio of which were the ranges of 0.3 to 3. And their microstructures phase composi-tions and mechanical properties were investigated. During reaction bonding Ni/Ti metal mixture had a good wettability an permeability with TiC preforms and pore-free and fully dense sintered bodies were fabricated. TiC particle shape changed from spherical to angular platelet-like and grain size was grown with Ni/Ti atomic ratio increasing from 0.3 to 1. whereas grain growth of TiC particle was restrained and its shape changed gain from angular platelet-like to spherical when Ni/Ti atomic ratio was more than 2. Maximum bending strength and fracture toughness were obtained at the Ni/Ti atomic ratio being 1 their values were 582 MPa and 11.1 MPa.m1/2 respectively.

  • PDF

무가압 분말 충전 성형법에 의해 제조된 Si 성형체의 반응 소결과 가스압 소결에 관한 연구 (A Study on the Reaction -Bonding and Gas Pressure Sintering of Si Compact made by Pressureless Powder Packing Method)

  • 박정현;강민수;백승수;염강섭
    • 한국세라믹학회지
    • /
    • 제33권12호
    • /
    • pp.1414-1420
    • /
    • 1996
  • 평균 입경 8${\mu}{\textrm}{m}$ Si 분말을 사용하여 무가압 분말 충전 성형볍에 의해 Si 성형체를 제조하였다. 이 Si 성형체를 1350,140$0^{\circ}C$의 온도에서 3~35시간동안 N2/H2 분위기에서 반응 소결한 후 미세구조를 관찰하였다. 반응 소결체는 90% 이상의 질화율과 88%의 상대밀도를 보였다. 반응 소결체의 가스압 소결을 위해 소결조제로서 MgO를 Mgnitrate 수용액 형태로 Si 성형체에 5wt% 첨가한 후140$0^{\circ}C$에서 15시간동안 반응 소결하였다. 이후 반응 소결체를 1800, 1900, 200$0^{\circ}C$에서 각각 150, 300분 동안 가스압 소결을 행하여 95%의 상대밀도와 598 MPa의 꺾임강도, 6 MPa.m1/2의 파괴인성을 나타내는 질화규소 소결체를 제조하였다.

  • PDF

규소 고분자 복합체를 이용한 반응소결 질화규소 (Reaction Bonded Si3N4 from Si-Polysilazane Mixture)

  • 홍성진;안효창;김득중
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.572-577
    • /
    • 2010
  • Reaction-bonded $Si_3N_4$ has cost-reduction merit because inexpensive silicon powder was used as a start material. But its density was not so high enough to be used for structural materials. So the sintered reaction-bonded $Si_3N_4$techniques were developed to solve the low density problem. In this study the sintered reaction-bonded $Si_3N_4$ manufacturing method by using polymer precursor which recently attained significant interest owing to the good shaping and processing ability was proposed. The formations, properties of reaction-bonded $Si_3N_4$ from silicon and polysilazane mixture were investigated. High density reaction-bonded $Si_3N_4$ was manufactured from silicon and silicon-containing preceramic polymers and post-sintering technique. The mixtures of silicon powder and polysilazane were prepared and reaction sintered in $N_2$ atmosphere at $1350^{\circ}C$ and post-sintered at 1600~$1950^{\circ}C$. Density and phase were analyzed and correlated to the resulting material properties.

Characterization of Pore Structures for Porous Sintered Reaction-Bonded Silicon Nitrides with Varied Pore-Former Content

  • Park, Young-Jo;Song, In-Hyuck;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.675-680
    • /
    • 2008
  • The effect of pore former content on both porosity and pore structure was investigated for porous sintered reaction-bonded silicon nitrides (SRBSNs). A spherical PMMA with $d_{50}=8{\mu}m$ was employed as a pore-former. Its amount ranged from 0 to 30 part. Porous SRBSNs were fabricated by post-sintering at various temperatures where the porosity was controlled at $12{\sim}52%$. The strong tendency of increasing porosity with PMMA content and decreasing porosity with sintering temperature was observed. Measured pore-channel diameter increased $(0.3{\rightarrow}1.1{\mu}m)$ with both PMMA content and sintering temperature.

용융 Si-C-SiC계에서 $\beta$-SiC 생성기구 ($\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System)

  • 서기식;박상환;송휴섭
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

반응결합 소결에 의한 TiC-Co/Al 복합체의 미세구조 및 기계적 특성 (Microstructure and Mechanical Properties of TiC-Co/Al Composites Prepared by Reaction-Bonded Sintering)

  • 한인섭;남기웅;정윤중
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.257-269
    • /
    • 1995
  • The TiC-Co/Al reaction-sintered products were prepared by the infiltration of various Co/Al metal mixture into the preform, and their microstructure, phases, and mechanical properties were investigated. With increasing the atomic ratio of Co/Al, tiC grain shape was changed from spherical to platelet particles, and the grain size increased. The crystalline phases found in the liquid matrix formed by the infiltration of Co/Al metal mixture were determined to be Al5Co2 and AlCo by EDS and XRD, and the two crystalline phases were located dominantly between TiC grains, when the Co/Al atomic ratio was lower than an unity. There was a tendency that the density, bending strength and fracture toughness increase with Co/Al atomic ratio until the infiltrated metal was 100% Co. The maximum value was achieved by the composition containing 100% Co infiltrated metal. The Vickers hardness decreased as Co/Al atomic ratio increased.

  • PDF

조대 Si입자분말을 사용한 질화반응 Si3N4의 치밀화 거동 (Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders)

  • 이주신;문지훈;한병동;박동수;김해두
    • 한국세라믹학회지
    • /
    • 제39권1호
    • /
    • pp.45-50
    • /
    • 2002
  • 평균입경 25$\mu m$의 Si조대분말에 소결조제의 조성과 양을 변화시켜 질화반응 질화규소 (RBSN)세라믹스를 제조할 때 나타나는 치밀화 거동, 미세구조의 발달 및 기계적 특성에 대하여 고찰하였다. 6wt% $Y_2O_3$ + 1wt% $Al_2O_3$(6YlA)의 소결조제를 첨가한 경우에는 치밀화를 이루지 못하였으나, 6wt% $Y_2O_3+3\;wt%\;Al_2O_3+2\;wt%\;SiO_2(6Y3A2S)$와 9wt% $Y_2O_3$+1.5wt% $A1_2O_3$+ 3w% $SiO_2$(9Yl.5A3S)의 소결조제를 첨가하여 이론밀도에 가까운 치밀화를 이루었다. $1900^{\circ}C$에서 소결한 6Y3A2S시편의 경우, 960MPa의 높은 파괴강도값과 $6.5MPa.m^{1/2}$의 파괴인성값을 얻었다.