• Title/Summary/Keyword: Reaction-bonded sintering

Search Result 53, Processing Time 0.021 seconds

Tribological Properties of Clay Bonded SiC (점토 결합 SiC 소결체의 마찰 마모 특성)

  • 한상준;이경희;이재한;김홍기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1027-1032
    • /
    • 1995
  • SiC had been widely applied for mechanical sealing as a sealing material. SiC sintering is commonly made of reaction sintering, presureless sintering, and hot isostatic pressing (HIP) sintering. In this investigation, however, clay bonded sintering was used to avoide any complications of the special sintering methods as mentioned above. In order to prevent harmful SiC oxidation in the clay bonded sintering, clay and frit were used to form the SiC oxidation protecting layer and graphite was added to provide high solid lubricity. As a result, the material with 6% clay (clay 5.4% and frit 0.6%) and 2~4% graphite (45 mesh) sintered at 140$0^{\circ}C$ for 3 hours, showed the following physical properties; porosity 6%, static friction coefficient 0.15, kinematic coefficient 0.1,. and specific wear rate 4.8$\times$10-8 $\textrm{mm}^2$kgf-1. On the other hand, the flexural strength was 900kgf/$\textrm{cm}^2$. This tribological characteristic properties were similar to those of the reaction sintered SiC except the flexural strength.

  • PDF

Silicon Melt Infiltration of Reaction-Bonded Silicon Carbide (반응소결 탄화규소에서 실리콘의 침윤향상)

  • 신현익;김주선;이종호;김긍호;송휴섭;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.693-698
    • /
    • 2002
  • Reaction-Bonded Silicon Carbide (RBSC) Ceramics were fabricated which satisfies the maximum packing density of silicon carbide skeleton in the green compacts. Such a high packing density induced incomplete infiltration during reaction-sintering; forms linear void around the interface of large alpha silicon carbide powders. During reaction-sintering, the limited extraction and entrapped gas induced by residue oxide was considered to be a reason of linear void formation. In order to improve infiltration behavior in the highly packed preform, the pre-treatment methods for residue oxide removal were proposed.

Microstructure and Mechanical Properties of Reaction-Bonded Sintering TiC-Based Composite Prepared by Ni-Ti Metal Infiltration (Ni/Ti 금속침투에 의한 반응결합소결 TiC계 복합체의 미세구조 및 기계적 특성)

  • 한인섭;우상국;김홍수;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.995-1002
    • /
    • 1996
  • The TiC-(Ni/Ti) composites were prepared by reaction bonding between TiC preforms and the melted mixture of Ni/Ti metal the atomic ratio of which were the ranges of 0.3 to 3. And their microstructures phase composi-tions and mechanical properties were investigated. During reaction bonding Ni/Ti metal mixture had a good wettability an permeability with TiC preforms and pore-free and fully dense sintered bodies were fabricated. TiC particle shape changed from spherical to angular platelet-like and grain size was grown with Ni/Ti atomic ratio increasing from 0.3 to 1. whereas grain growth of TiC particle was restrained and its shape changed gain from angular platelet-like to spherical when Ni/Ti atomic ratio was more than 2. Maximum bending strength and fracture toughness were obtained at the Ni/Ti atomic ratio being 1 their values were 582 MPa and 11.1 MPa.m1/2 respectively.

  • PDF

A Study on the Reaction -Bonding and Gas Pressure Sintering of Si Compact made by Pressureless Powder Packing Method (무가압 분말 충전 성형법에 의해 제조된 Si 성형체의 반응 소결과 가스압 소결에 관한 연구)

  • 박정현;강민수;백승수;염강섭
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1414-1420
    • /
    • 1996
  • Using Si powder with average particle size of 8${\mu}{\textrm}{m}$ Si compacts were formed by pressureless powder packing method. The compacts were reaction bonded at 1350, 140$0^{\circ}C$ for 3~35 hrs under N2/H2 atmosphere and its microstructures were examined. Reaction bonded silicon nitrides showed nitridation of 90% and relative density of 88% After the impregnation of 5wt% MgO as sintering additive using aqueous solution of Mg nitrate the Si compacts were reaction bonded at 140$0^{\circ}C$ for 15hrs. The reaction bonded bodies were gas pressure sintered at 180$0^{\circ}C$ 190$0^{\circ}C$ 200$0^{\circ}C$ for 150, 300min. They showed relative density of 95% bending strength of 600MPa and fracture toughness of 6 MPa.m1/2.

  • PDF

Reaction Bonded Si3N4 from Si-Polysilazane Mixture (규소 고분자 복합체를 이용한 반응소결 질화규소)

  • Hong, Sung-Jin;Ahn, Hyo-Chang;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.572-577
    • /
    • 2010
  • Reaction-bonded $Si_3N_4$ has cost-reduction merit because inexpensive silicon powder was used as a start material. But its density was not so high enough to be used for structural materials. So the sintered reaction-bonded $Si_3N_4$techniques were developed to solve the low density problem. In this study the sintered reaction-bonded $Si_3N_4$ manufacturing method by using polymer precursor which recently attained significant interest owing to the good shaping and processing ability was proposed. The formations, properties of reaction-bonded $Si_3N_4$ from silicon and polysilazane mixture were investigated. High density reaction-bonded $Si_3N_4$ was manufactured from silicon and silicon-containing preceramic polymers and post-sintering technique. The mixtures of silicon powder and polysilazane were prepared and reaction sintered in $N_2$ atmosphere at $1350^{\circ}C$ and post-sintered at 1600~$1950^{\circ}C$. Density and phase were analyzed and correlated to the resulting material properties.

Characterization of Pore Structures for Porous Sintered Reaction-Bonded Silicon Nitrides with Varied Pore-Former Content

  • Park, Young-Jo;Song, In-Hyuck;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.675-680
    • /
    • 2008
  • The effect of pore former content on both porosity and pore structure was investigated for porous sintered reaction-bonded silicon nitrides (SRBSNs). A spherical PMMA with $d_{50}=8{\mu}m$ was employed as a pore-former. Its amount ranged from 0 to 30 part. Porous SRBSNs were fabricated by post-sintering at various temperatures where the porosity was controlled at $12{\sim}52%$. The strong tendency of increasing porosity with PMMA content and decreasing porosity with sintering temperature was observed. Measured pore-channel diameter increased $(0.3{\rightarrow}1.1{\mu}m)$ with both PMMA content and sintering temperature.

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Microstructure and Mechanical Properties of TiC-Co/Al Composites Prepared by Reaction-Bonded Sintering (반응결합 소결에 의한 TiC-Co/Al 복합체의 미세구조 및 기계적 특성)

  • 한인섭;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.257-269
    • /
    • 1995
  • The TiC-Co/Al reaction-sintered products were prepared by the infiltration of various Co/Al metal mixture into the preform, and their microstructure, phases, and mechanical properties were investigated. With increasing the atomic ratio of Co/Al, tiC grain shape was changed from spherical to platelet particles, and the grain size increased. The crystalline phases found in the liquid matrix formed by the infiltration of Co/Al metal mixture were determined to be Al5Co2 and AlCo by EDS and XRD, and the two crystalline phases were located dominantly between TiC grains, when the Co/Al atomic ratio was lower than an unity. There was a tendency that the density, bending strength and fracture toughness increase with Co/Al atomic ratio until the infiltrated metal was 100% Co. The maximum value was achieved by the composition containing 100% Co infiltrated metal. The Vickers hardness decreased as Co/Al atomic ratio increased.

  • PDF

Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders (조대 Si입자분말을 사용한 질화반응 Si3N4의 치밀화 거동)

  • 이주신;문지훈;한병동;박동수;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Effect of sintering additives on the densification behavior of reaction-bonded silicon nitride prepared by using coarse Si powders is discussed. Sintering additives such as 6 wt% $Y_2O_3$+1wt% $A1_2O_3$ (6YlA) did not give rise to full densification, while full densification was obtained by using the sintering additives such as 6wt% $Y_2O_3$+3 wt% $A1_2O_3$+ 2wt% $SiO_2$ (6Y3A2S) and 9wt% $Y_2O_3$+ 1.5wt% $A1_2O_3$+ 3wt% $SiO_2$ (9Yl.5A3S). In the case of 6Y3A2S addition, high fracture strength of 960 MPa and the fracture toughness of $6.5 MPa.m^{1/2}$ were obtained.