• Title/Summary/Keyword: Reaction wheel

Search Result 148, Processing Time 0.025 seconds

An experimental study on attitude control of spacecraft using roaction wheel (반작용 휠을 이용한 인공위성 지상 자세제어 실험 연구)

  • 한정엽;박영웅;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1334-1337
    • /
    • 1997
  • A spacecraft attitude control ground hardware simulator development is discussed in the paper. The simulator is called KT/KARI HILSSAT(Hardware-In-the Loop Simulator Single Axis Testbed), and the main structure consists of a single axis bearing and a satellite main body model on the bearing. The single axis tabel as ans experimental hardware simulator that evaluates performance and applicability of a satellite before evolving and/or confirming a mew or and old control logic used in the KOREASAT is developed. Attitude control of spaceraft by using reaction wheel is performed.

  • PDF

Control of Inverted Pendulum using Twisted Gyro-Wheel (비틀림 자이로휠을 이용한 인버티드 펜듈럼의 제어)

  • Hwang, Jung-Moon;Pyo, Beom-Sik;Kim, Jung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1181-1188
    • /
    • 2011
  • A control system for stabilizing a small robot or inverted pendulum using twisted gyro wheel is proposed. Conventional stabilizer using inertial wheel employs action-reaction force/torque to control a pendulum, which can generate relatively small torque and short period of output. In this paper, a novel actuation method using twisted gyro torque in 3-dimentional space was proposed to stabilizing a pendulum by twisting the assembly including a rotating gyro wheel. In addition, two special control functions for this type of twisted gyro wheel were designed. One is the function of self-adjusting the mass center of the robot and the other is the torque reloading configuration for continuous torque generation. The proposed system was verified by experimental result and simulation. The designed twisted gyro wheel control system can be easily packed in a small size module and installed in a humanoid robot or inverted pendulum type mechanism.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.

아리랑2호 반작용휠의 성능 및 기능 시험

  • Kwon, Jae-Wook;Kim, Young-Yun;Choi, Jong-Yeon;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.7-10
    • /
    • 2004
  • KOMPSAT-2 needs fine accuracy attitude control when it is operated in Science mode. Reaction Wheel is a necessary part of fine controlling the attitude of satellite. The reaction Wheel Assembly(RWA) is a device which provides reaction torque for attitude-control of spacecraft. It consists of an electric motor, a rotating flywheel, motor control device electrics, commutation electronics and associated power converters. This document identifies what activities to be carried out to integrate the RW#1 for ETB tests.

  • PDF

Numerical Study on a Reaction Wheel and Wheel-Disturbance Modeling (반작용휠 및 휠 교란 모델링에 관한 해석적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Yong, Ki-Lyuk;Yang, Koon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.702-708
    • /
    • 2010
  • Reaction wheel assemblies(RWA) are expected to be one of the largest high frequency disturbance sources to the optical payload of satellites. To ensure the tight pointing-stability budget and high image quality of satellites, a vibration isolation device should be applied to the main disturbances. For developing the isolating system, the disturbances need to be identified and modeled accurately. In the present study, a modeling technique of RWA and its disturbance was described. The micro-vibration disturbances were generated numerically by using an analytical wheel and disturbance model. The parameter estimation scheme of the model was suggested, and the RWA and disturbance modeling technique was verified through the numerical example analysis. The analytical results show that the wheel and disturbance model can be accurately established by using the modeling technique proposed in the present study. The wheel and disturbance model is expected to be useful for development of the RWA isolator system.

Micro-Vibration Measurement, Analysis and Attenuation Techniques of Reaction Wheel Assembly in Satellite (인공위성 반작용휠의 미소진동 측정, 해석 및 저감 기술)

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.126-132
    • /
    • 2002
  • Jitter induced from several payloads on-board satellites degrade the performance of pointing accuracy and attenuate the resolving power of highly-precise camera image such as KOMPSAT II. In this paper, we introduce a micro-vibration measurement technique, analysis of dynamic characteristics, and modeling method for a reaction wheel assembly which is one of the major sources of jitter in satellites and an effective vibration reduction techniques are considered. Based on these techniques, vibration measurement and passive control were performed with an micro-vibration generator which was designed to have similar dynamic performances with an actual reaction wheel assembly above 50Hz.

Error Analysis of Reaction Wheel Speed Detection Methods Due to Non-uniformity of Tacho Pulse Duration (타코 펄스 불균일성이 존재하는 반작용휠의 속도측정 방법 오차 분석)

  • Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • Two conventional speed detection methods (Elapsed-time method and Pulse-count method) are analyzed and compared for a high speed motor with digital tacho pulse with non-uniformity. In general, the elapsed-time method usually has better performance than a pulse-count method in case sufficiently high speed clock is used to measure the time difference. But if a tacho pulse non-uniformity exists in the reaction wheel - most of reaction wheel has a certain amount of non-uniformity - the accuracy of the elapsed-time method is degraded significantly. Thus the performance degradation is analyzed with respect to the level of non-uniformity of tacho pulse distribution and an allowable bound is suggested.

  • PDF

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

The Implementation of the Speed Measurement Board for the Reaction Wheel on the LEO Satellite using the T, M-Method (T-방식과 M-방식을 이용한 저궤도위성용 반작용 휠의 속도측정보드 설계)

  • Lee, Jae-Nyeung;Park, Sung-Hun;Heu, Su-Jin;Lee, Yun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.827-832
    • /
    • 2012
  • In this paper, we will design the speed measurement board of LEO Satellite's reaction wheel which has two speed measuring methods as M-Method type and T-Method type. therefore we can use the advantage of two methods. and we will verify the availability of design on the on-board computer at the real LEO Satellite(KOMPSAT-3). In the reaction wheels satellite that can change the satellite's attitude is one of the leading drivers by the rotational inertia of the motor will perform attitude control. Reaction methods for detecting wheel rotation speed generated during a certain period T internal reaction wheel tacho pulse counting M-Method to detect wheel speed and wheel tacho pulses are generated by measuring the time between the detection rate can be divided into T-Method. M-method is simple to implement and benefit measurement time is constant, but slow fall in the velocity measurement accuracy is a disadvantage. In contrast, the time between tacho pulses to measure the T-Method to measure the precise speed at low speed and to measure the time delay is small, has the advantage. However, this method also in the actual implementation and the complexity of the operation at different speeds depending on the speed of operation has the disadvantage.

Analysis of STSAT-3 Jitter due to the Reaction Wheel Disturbance (반작용 휠의 외란에 의한 STSAT-3 지터 분석)

  • Kim, Dong-Hoon;Cheon, Dong-Ik;Oh, Hwa-Suk;Lee, Sangchul;Bang, Hyochoong;Rhee, Seung-Wu
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.32-36
    • /
    • 2007
  • When the reaction wheel rotates, the disturbance occurs mainly due to the mass imbalance. It is necessary to predict the effect of disturbance on the attitude stability of the satellite. The disturbance forces and torques are identified and the attitude jitter of the satellite is analyzed depending on the configuration of the wheels. On the analysis the equation of the satellite motion is combined with the translational and rotational dynamics of the wheels. The accuracy of analysis is verified by simulation of STSAT-3 satellite.

  • PDF