DOI QR코드

DOI QR Code

Micro-Vibration Measurement, Analysis and Attenuation Techniques of Reaction Wheel Assembly in Satellite

인공위성 반작용휠의 미소진동 측정, 해석 및 저감 기술

  • 오시환 (한국항공우주연구원 위성제어연구그룹) ;
  • 이승우 (한국항공우주연구원 위성제어연구그룹)
  • Published : 2002.12.01

Abstract

Jitter induced from several payloads on-board satellites degrade the performance of pointing accuracy and attenuate the resolving power of highly-precise camera image such as KOMPSAT II. In this paper, we introduce a micro-vibration measurement technique, analysis of dynamic characteristics, and modeling method for a reaction wheel assembly which is one of the major sources of jitter in satellites and an effective vibration reduction techniques are considered. Based on these techniques, vibration measurement and passive control were performed with an micro-vibration generator which was designed to have similar dynamic performances with an actual reaction wheel assembly above 50Hz.

인공위성의 각종 탑재체에 의해 발생하는 미소진동은 위성의 고정밀 지향도를 떨어뜨리고 고해상도 카메라를 탑재하고 있는 다목적 실용위성 같은 경우, 위성 영상의 해상도 및 분해능을 저하시킨다. 본 논문에서는 인공위성체 미소진동의 가장 큰 요인 중의 하나로 작용하는 반작용휠의 미소진동 측정 기술, 동특성 해석 및 모델링 기술을 소개하고 이의 진동 저감 방법 등을 모색하였다. 이러한 기술들을 토대로 하여 반작용휠과 유사한 동특성을 가지는 진동 발생기를 제작, 미소진동을 측정하였고 수동 감쇄 재료를 이용하여 이를 저감 시키는 실험을 수행하였다.

Keywords

References

  1. 박성동, 김병진, 박원규, 김이을, 장현석, 선종호, “1미터급 상용 지구관측 위성시대에 즈음하여”, 한국항공우주학회지, 제29권, 제4호, 2002, pp. 130-135
  2. Masterson, R. A., Miller, D. W. and R. L. Grogan, "Development of Empirical and Analytical Reaction Wheel Disturbance Models," AIAA-99-1204
  3. Bialke, B. B., "Microvibration Disturbance Source in Reaction Wheels and Momentum Wheels," Conference on Spacecraft Structure Materials and Testing, Netherlands, March, 1996, pp.765-770
  4. Olivier de Weck, "Reaction Wheel Disturbance Analysis," Memorandum MIT-SSL-NGST-98-1, 1998
  5. Hasha, M. D., "Passive Isolation/Damping System for the Hubble Space Telescope Reaction Wheel," NASA TM, N87-29873, 1987
  6. Fuller, C. R., Elliott, S.J. and Nelson P. A., Active Control of Vibration, Academic Press, 1996
  7. Doyle, J. C. and Glover, K., Robust and Optimal Control, Prentice Hall, 1996
  8. Widrow, B. and Stearns, S. D., Adaptive Signal Processing, Prentice Hall, 1985
  9. Nashif, A. D., Jones, D. G. , and Henderson, J. P., Vibration Damping, Wiley-Interscience, 1985
  10. Miyazaki, T., Misuno, K. and Hamada, H., "Convergence rate and Stability of Adaptive Filter with State-Space Feedback Controller for Active Micro-Vibration Control, ACTIVE95, USA, pp233-238, 1995

Cited by

  1. Coupled microvibration analysis of a reaction wheel assembly including gyroscopic effects in its accelerance vol.332, pp.22, 2013, https://doi.org/10.1016/j.jsv.2013.06.011
  2. Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command vol.8, pp.1, 2007, https://doi.org/10.5139/IJASS.2007.8.1.010
  3. Numerical Study on a Reaction Wheel and Wheel-Disturbance Modeling vol.38, pp.7, 2010, https://doi.org/10.5139/JKSAS.2010.38.7.702
  4. c-CMG Cluster for Small Satellites vol.8, pp.1, 2007, https://doi.org/10.5139/IJASS.2007.8.1.105
  5. Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera vol.10, pp.1, 2016, https://doi.org/10.20910/JASE.2016.10.1.86
  6. Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications vol.8, pp.1, 2007, https://doi.org/10.5139/IJASS.2007.8.1.001
  7. On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite vol.43, pp.8, 2015, https://doi.org/10.5139/JKSAS.2015.43.8.757