• Title/Summary/Keyword: Reaction stability

Search Result 1,612, Processing Time 0.027 seconds

The Stability of Piroxicam in Propylene Glycol (프로필렌글리콜에서의 피록시캄의 안정성)

  • Shin, Young-Shin;Shin, Young-Hee;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 1988
  • The stability and solubility of piroxicam in propylene glycol (PG), polyethylene glycol (PEC), and PG-water cosolvents have been studied by using high performance liquid chromatography. The degradation rate followed an apparent first-order kinetic and the reaction rate constants at 70, 80, and $90^{circ}C$ were determined. From these rate constants, the activation energy and the rate constant of piroxicam at $25^{circ}C$ in pure PG calculated by Arrhenius equation were 23.34 kcal/mole and $7.0\;{\times}\;10^{-4}\;day^{-1}$, respectively. Both of PG and PEG increased the solubility of the drug, but PEG was more effective.

  • PDF

Reactivity and Stability of Lignostilbene-$\alpha$, $\beta$-Dioxygenase-I in Various pHs, Temperatures, and in Aqueous Organic Solvents

  • Makoto, Niwa;Kamoda, Shigehiro;Saburi, Yoshimasa
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.884-886
    • /
    • 2001
  • The reactivity and stability of purified Lignostilbene- ${\alpha}$,${\beta$}-dioxygenase (LSD)-I were examined. Its optimum temperature was $50^{\circ}C$ at pH 8.5, but it was stable only up to $30^{\circ}C$. The activity of LSD-I increased 12-fold by $30\%$, with increased $V_{max}$ and lowered $K_m.$ LSD-I was stable in 10% methanol.

  • PDF

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF

Depolymerization of Chitosan Using H2O2 and Decrease in Molecular Weight upon Storage Time (H2O2에 의한 저분자화 키토산의 제조와 시간경과에 따른 분자량 저하)

  • Kim, Hee-Jung;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.5
    • /
    • pp.520-528
    • /
    • 2003
  • Chitosan was depolymerized by oxidizing agent, hydrogen peroxide ($H_2O_2$) and general properties of resulting low molecular weight chitosan(LMWC) were studied. Effect of amount of $H_2O_2$, ratio of $H_2O_2$/chitosan, and reaction temperature were investigated in preparing LMWC. In addition, the reduction of molecular weight of prepared LMWC were measured after a certain time passage. Pre-swelling treatment of starting chitosan affected uniform and mild reaction of depolymerization and increased the solubility of resulting LMWC. Prepared LMWC (Mw 100,000) showed a decrease in Mw by 25-35%. Prepared LMWC(Mw 60,000-70,000) showed a decrease in Mw by 10-15% after 7 months. Therefore, this depolymerizing process can be concluded desirable in terms of stability. In addition, yellowing of pre-swelling treated chitosan upon time passage was insignificant compared with that of untreated chitosan. Therefore, pre-swelling treatment of chitosan before depolymerization would be beneficial in terms of stability of physical state.

Attitude Controller Design and Test of Korea Space Launch Vehicle-I Upper Stage

  • Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2010
  • This paper introduces the upper stage attitude control system of KSLV-I, which is the first space launch vehicle in Korea. The KSLV-I upper stage attitude control system consists of two electro-hydraulic actuators and a reaction control system using cold nitrogen gas. A proportional, derivative, and integral controller is designed for the electro-hydraulic thrust vectoring system, and Schmidt trigger ON/OFF controllers are designed for the reaction control system. Each attitude controller is designed to have enough stability margins. The stability and performance of KSLV-I upper stage attitude control system is verified via hardware in the loop tests. Hardware in the loop tests are accomplished for perturbed flight conditions as well as nominal flight condition. The test results show that the attitude control loop of KSLV-I upper stage is very stable and the attitude controllers perform well for all flight conditions. Attitude controllers designed in this paper have been successfully applied to the first flight of KSLV-I on August 25, 2009. The flight test results show that all attitude controllers of the KSLV-I upper stage performed well and satisfied the accuracy specifications even during abnormal flight conditions.

A Study on Chemical Modification Effect of Papermaking Fiber by Cyanoethylation (Cyanoethyl화에 의한 제지용 섬유의 화학적 개질효과에 관한 연구)

  • Yoon, Se-Young;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.56-64
    • /
    • 1997
  • Since there are three hydroxyl groups on each anhydroglucose ring of the cellulose, the renewable resources, we can get various functional papers by the chemical modification of cellulose. The reaction involving the introduction of the ${\beta}$-cyanoethyl ($-CH_2-CH_2$-CN) group into organic substances containing reactive hydrogen atoms is known as cyanoethylation. Cellulose reacts with acrylonitrile in the presence of strong alkalis in a typical manner of primary and secondary alcohols to form cyanoethyl ethers. In cyanoethylation, important factors of reaction are temperature, concentration of the NaOH, and addition rate of acrylronitrile. FT-IR spectra of cyanoethyl group was confirmed at $2250cm^{-1}$, which corresponds the introduction of aliphatic nitrile group. Effect of cyanoethyl DS(degree of substitution) on strength properties was resulted that cyanoethylated BKP of DS 0.04 appeared to be the best choice for overall strength properties. Also, excellent thermal stability in aging characteristics was obtained.

  • PDF

Stabilization of Tyrosinase for Catechol Production (Catechol생산을 위한 Tyrosinase의 안정화)

  • 박종현;김용환유영제이윤식
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.525-531
    • /
    • 1994
  • Tyrosinase has two types of enzymatic activities, cresolase catalyzing the hydroxylation of monophenol and catecholase catalyzing the oxidation of o-phenol. Gradual inactivation of the enzyme during the reaction is a barrier to be overcome for the commercial application of the enzyme. Tyrosinase was stabilized by modifying the lysine residue of the enzyme using glutaraldehyde. In addition to that, tyrosinase was also stabilized by adapting the continuous reactor system. In packed bed reactor quinone could be easily removed, so the stability of tyrosinase increased. Borate buffer retarded the reaction rate of catechol to quinone and consequently decreased the tyroslnase inactivation. Tyrosinase immobilizer on controlled pore glass showed significantly enhanced stability in a packed-bed reactor.

  • PDF

Preparation of Fe(III)-Coated Starfish and Evaluation of the Removal Capacity of Copper (3가철 코팅 불가사리 흡착제 제조 및 구리 제거 특성 평가)

  • Yang, Jae-Kyu;Yu, Mok-Ryun;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.172-176
    • /
    • 2006
  • Fe(III)-Coated Star Fish (ICSF) was prepared by reaction of calcined Star Fish (SF) with Fe(III) solution at an elevated temperature. To investigate the stability of ICSF at acidic condition, dissolution of Fe was studied at pH 2 as a function of time. Extracted iron was negligible over the entire reaction time. This stability test suggests the applicability of ICSF in the treatment of wastewater even at low pH. Adsorption capacity of Cu(II) onto SF and ICSF was investigated in a batch and a column test. In the pH-edge adsorption, adsorption of copper onto SF and ICSF was quite similar over the entire pH range due to the presence of an important amount of Fe in SF itself. From the adsorption isotherm obtained with variation of the concentration of Cu(II), ICSF showed 1.6 times greater adsorption capacity than SF. Also, ICSF showed a greater removal capacity of Cu(II) in the column test.

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Comparison of Some Physiological Indices during Graded Load with Paced & Self-Paced Respiration (보조와 외부보조 호흡시 부하에 대한 생리적 지표들의 비교연구)

  • Kim, Jeong-Seok;Lee, Jong-Seong;No, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.17-24
    • /
    • 1985
  • To compare heart rate, $O_2$ uptake, $Vo_2$ ($O_2$ consumption), blood pressure (systolic, diastolic), reaction time, stability, flicker fusion value during 4 load levels with Rs (self-paced respiration) and Rp (paced respiration), 4 subjects participated in this experiment 1 hour/day, 6 days/week for 9 weeks. The cycle of Rp is 6 sec. (inspiration: 3 sec. & expiration: 3 sec.) Implications of the results are discussed in terms of the change in the physiological responses and human performance by the respiratory pattern. The results are as follows, 1. The changing magnitude of heart rate with Rp was larger than with Rs and the variance during load level 4 was significant. 2. The $Vo_2$ with Rp was smaller than with Rs and maximal $O_2$ uptake given load levels with Rp occurred and for two subjects, it significantly moved from low load level to high load level. 3. The changing magnitude of blood pressure was not consistent but the systolic pressure with Rp was smaller at rest than with Rs. 4. The score of reaction time test and stability test with Rp was better than with Rs.

  • PDF