• 제목/요약/키워드: Reaction rate model

검색결과 689건 처리시간 0.037초

콘크리트의 수화도 및 단열온도상승량 예측모델 개발 (Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise)

  • 오병환;차수원;신경준;하재담;김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

황화수소 제거를 위한 칼슘계 고온 탈황제의 황화반응속도 (Kinetic of High-Temperature Removal of $H_2S$ by Ca-based Sorbents)

  • 김영식;전지환;손병현;정종현;정덕영;오광중
    • 한국환경과학회지
    • /
    • 제8권1호
    • /
    • pp.125-133
    • /
    • 1999
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulated fuel gases containing 5000ppm $H_2S$ for temperatures ranging from 600 to 80$0^{\circ}C$ in a TGA (Thermalgravimetric analyzer). The reaction between CaO and $H_2S$ proceeds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of $H_2S$ by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

상수처리시스템의 응집제 주입공정 모델링에 관한 연구 (A study on coagulant dosing process in water purification system)

  • 남의석;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.317-320
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on the water quality such as turbidity, temperature, pH and alkalinity etc. However, the process of chemical reaction to improve water quality by the chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts or jar-test results. This paper presents the method of deriving the optimum dosing rate of coagulant, PAC(Polymerized Aluminium Chloride) for coagulant dosing process in water purification system. A neural network model is developed for coagulant dosing and purifying process. The optimum coagulant dosing rate can be derived the neural network model. Conventionally, four input variables (turbidity, temperature, pH, alkalinity of raw water) are known to be related to the process, while considering the relationships to the reaction of coagulation and flocculation. Also, the turbidity in flocculator is regarded as a new input variable. And the genetic algorithm is utilized to identify the neural network structure. The ability of the proposed scheme validated through the field test is proved to be of considerable practical value.

  • PDF

대기내 발생하는 복잡한 광화학반응에 대한 수치실험 (Numerical Simulation of Complicated Photochemical Reactions Occurring in the Atmosphere)

  • 원경미;김유근;이화운;김희정
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.203-209
    • /
    • 2006
  • In predicting oxidants concentration, the most important fact is to select a suitable photochemical reaction mechanism. Sensitivity analysis of $O_3$ and other important photochemical oxidants concentrations was conducted by using CBM-IV model. The predicted oxidants concentration was considerably related with the initial concentration of formaldehyde, $[NO_2]/[NO],\;NO_x$, RH and RCHO. As the initial concentration of formaldehyde increased, concentration of $NO_2$ increased. $O_3$ concentration was proportional to the $[NO_2]/[NO]$ ratio. When the initial concentrations of RH and RCHO were high, photochemical reaction was more reactive, including more rapid conversion of NO to $NO_2$ and increased oxidants. Also, the sensitivities of ozone formation to rate constants, $K_l,\;K_2\;and\;K_3$ in the $NO_2$ photolysis were studied.

반응로 형상에 따른 주기적으로 배열된 패턴위의 GaN 성장 특성 (Characteristic of GaN Growth on the Periodically Patterned Substrate for Several Reactor Configurations)

  • 강성주;김진택;박복춘;이철로;백병준
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.225-233
    • /
    • 2007
  • The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from tile reaction of TMG(trimethly-gallium) and ammonia. GaN growth rate was estimated through the model analysis including the effect of species velocity, thermal convection and chemical reaction, and thermal condition for the uniform deposition was to be presented. The effect of shape and construction of microscopic pattern was also investigated using a simulator to perform surface analysis, and a review was done on the quantitative thickness and shape in making GaN layer on the pattern. Quantitative analysis was especially performed about the shape of reactor geometry, periodicity of pattern and flow conditions which decisively affect the quality of crystal growth. It was found that the conformal deposition could be obtained with the inclination of trench ${\Theta}>125^{\circ}$. The aspect ratio was sensitive to the void formation inside trench and the void located deep in trench with increased aspect ratio.

Theoretical Evaluation of the Electrophilic Catalyses in Successive Enolization and Reketonization Reactions by Δ5-3-Ketosteroid Isomerase

  • Park, Hwang-Seo;Seh, Jung-Hun;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.837-845
    • /
    • 2002
  • Based on ab initio calculations at the MP2(FULL)/6-31+G**//RHF/6-31G** level, we compare the energetic and mechanistic features of a model reaction for catalytic action of Δ?-3-ketosteroid isomerase (KSL,E.C.5.3,3.1) with those of a corresponding nonenzymatic reaction in aqueous solution. The results show that the two catalytic acid residues,Tyr14 and Asp99, can lower the free energy of activation by 8.6kcal/mol, which is in good agreement with the experimentally predicted~9 kcal/mol,contribution of electrophilic catalyses to the whole enzymatic rate enhancement. The dienolate intermediate formed by proton transfer from the substrate carbon acid to the catalytic base residue (Asp38) ins predicted to be stabilized by 12.0 kcal/mol in the enzymatic reaction, making its formation thermodynamically favorable. It has been argued that enzymes catalyzing the reactions of carbon acids should resolve the thermodynamic problem of stabilizing the enolate intermediate as well as the kinetic porblem of lowering the free energy of activation for porton abstraction. We find that KSI can successfully overcome the thermodynamic difficulty ingerent in the nonenzymatic reaction through the electrophilic catalyses of the two acid residues. Owing to the stabilization of dienolate intermediate, the reketonization step could influence the overall reaction rate more significantly in the KSI- catalyzed reaction than in the nonenzymatic reaction, further supporting the previous experimental findings. However, the electrophilic catalyses alone cannot account for the whole catalygic capability (12-13 kcal/mol), confiming the earlier experimental implications for the invement of additional catalytic components. The present computational study indicates clearly how catalytic residues of KSI resolve the fundamental problems associated with the entropic penalty for forming the rate-limiting transition state and its destabilization in the bulk solvation environment.

Amberlyst-15 촉매의 존재 하에서 올레산과 메탄올의 에스테르화 반응 속도식 연구 (A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15)

  • 김영주;김덕근;이영우;박순철;이진석
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.621-626
    • /
    • 2005
  • Amberlyst-15 고체 산 촉매를 사용하여 올레산을 메탄올과 반응시켜 바이오 디젤의 성분이 되는 지방산 메틸 에스테르로 전환시켰다. 본 연구에서는 시료의 산가를 측정하고 전환율을 구함으로써 반응 온도, 메탄올 대 올레산의 몰 비 및 촉매의 양이 반응에 미치는 영향을 살펴보았다. 실험 범위 내에서 반응 온도가 $20^{\circ}C$ 상승할 때에 반응 속도는 약 2배씩 증가하였다. 그리고 메탄올 대 올레산의 몰 비가 증가 될 때는 최종 전환율은 증가하였지만, 반응에는 뚜렷한 차이가 없었다. 촉매 역시 반응에 중요한 변수로써, Amberlyst-15의 양을 2배로 증가시켰을 때, 반응속도는 1.2-1.3배 빨라졌다. 실험 데이터를 정량적으로 해석하기 위해 동역학식 연구를 하였으며 모사 균일 혼합물 모델(pseudo-homogeneous model)을 이용한 2차 반응 속도식을 전개하였다.

탄화수소계 연료의 축소반응모텔과 노말-헵탄(n-Heptane)의 자발화 현상 (Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of n-Heptane)

  • 여진구
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.76-83
    • /
    • 2002
  • Mathematically and chemically simplified reaction scheme for n(heptane that simulates autoignitions of the end gases in spark ignition engines has been developed and studied computationally. The five(equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius pre-exponential constants, A, and heats of reaction for stoichiometric nheptane/air has all been optimized. Comparisons between computed and experimental autoignition delay times have validated the present simplified reaction scheme. The influences of heat loss and concentration of chain carrier at the beginning of compression upon autoignition delay times have been computationally investigated.

탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간 (Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers)

  • 여진구
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

논문 : 유한속도 화학반응을 고려한 초음속 로켓의 플룸 유동장 해석 (Papers : Analysis of Supersonic Rocket Plume Flowfield with Finite - Rate Chemical Reactions)

  • 최환석;문윤완;최정열
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.114-123
    • /
    • 2002
  • 케로신/액체산소 추진기관을 갖는 초음속 로켓의 플룸 유동장을 9 화학종 14 반응 모델과 연계된 레이놀즈 평균 Navier-Stokes 방정식을 이용하여 해석하였다. 유한속도 화학반응이 플룸 유동장에 미치는 영향을 고찰하기 위하여 그 결과를 화학적 동결유동 해석 결과와 비교하였다. 계산은 상용 CFD 소프트웨어인 FLUENT 5를 이용하여 수행하였다. 반응 유동 해석 결과는 노즐 내부에서의 화학반응에 따른 연소가스의 온도 증가로 인해 전체적으로 동결유동에 비해 더 높은 온도장을 나타내었다. 플룸에서의 모든 화학반응은 전단류와 배럴 충격파 반사지점 후방의 고온 영역에 국한되어 일어났으며 본 해석의 경우 플룸내에서의 유한속도 화학반응이 유동에 미치는 영향은 미약한 것으로 나타났다. 그러나 본 연구에서 이루어진 유한속도 화학반응을 고려한 플룸 해석을 통하여 플룸에서의 주된 화학 반응 및 이들의 반응 메커니즘을 확인할 수 있었다.