• Title/Summary/Keyword: Reaction rate equation

Search Result 350, Processing Time 0.035 seconds

Kinetics of Lipase Reactions in Two Phase System (이상계내에서 리파제의 반응동력학)

  • Kwon, Dae Y.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.98-103
    • /
    • 1987
  • Two phase reaction system was used to hydrolyze the olive oil for fat splitting. Kinetics of lipases in two phase system were investigated by determining the hydrolysis rate of triglycerides at various olive oil concentrations in isooctane using the microbial lipases from Candida rugosa and Rhizopus arrhizus. The rate equation in lipid hydrolysis for various olive oil concentrations in two phase system was deviated from the Michaelis-Menten kinetics. The results suggested that the olive oil concentration in isooctane affects the interfacial area. The dependency of the interfacial area on olive oil concentration is greater at the lower olive oil concentration than at the higher substrate concentration. We modified the rate equation by considering the interfacial area between two phases depending on the olive oil concentration in solvent phase.

  • PDF

The Effects of Charge Transfer Complex on the Reaction of Aniline and Iodine (Aniline과 Iodine간의 반응에 있어서 전하이동 착물의 영향)

  • Oh-Yun Kwon;U-Hyon Paek;Eung-Ryul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.174-179
    • /
    • 1992
  • Reaction of aniline and iodine in$CHCl_3,\;CH_2Cl_2 : CHCl_3$(1 : 1), and $CH_2Cl_2$ has been studied kinetically by using conductivity method, Pseudo first-order rate constants ($k_{obs}$) and second-order rate constants ($k_{obs}$/[aniline]) are dependent on the aniline concentration. Second-order rate constants obtained were increased with increasing aniline concentration. We analysed these results on the basis of formation of charge transfer complex as reaction intermediate. From the construction of react ion scheme and derivation of rate equation, we calculated equilibrium constants and activation parameters for the formation and transformation of charge transfer complex. The equilibrium constants were decreased by an increase in the dielectric constant of the solvent and the value is 1.7-3.7$M^{-1}$. The rate of transformation are markedly affected by the solvent polarity. ${\Delta}H^{\neq}$ is about 14.2kJ/mol, and ${\Delta}S^{\neq}$ is large negative value of -243J/mol K.

  • PDF

Nucleophilic Addition Reaction of Thioglycolic acid to 2-Fluorenylidene chalcone Derivatives (2-Fluorenylidene chalcone유도체에 대한 Thioglycolic acid의 친핵성 첨가 반응에 관한 연구)

  • Lee, Ki-Chang;Lee, Kwang-Il;Hwang, Yong-Hyun;Ryu, Jung-Wook;Yoon, Cheol-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.107-113
    • /
    • 1996
  • Fluorenylidene chalcone derivatives were synthesized by condensation. The structure of these compounds were ascertained by means of UV, melting point, IR and $^1H-NMR$ spectra. The nucleophilic addition reaction kinetics of Thioglycolic acid to fluorenylidene chalcone was investigate by UV in 20% $dioxane-H_2O$ at $25^{\circ}C$. The rate equation which were applied over a wide $pH1.0{\sim}13.0$ range. On the basis of general base catalysis and confirmation of addition reaction product, the nucleophilic addtion reaction kinetics of thioglycolic acid to fluorenylidene chalcone were measured by the pH change. From the result of the above caption, a plausible nucleophilic addition reaction mechanism of thioglycolic acid to fluorenylidene chalcone was proposed. These compounds may be used as the starting materials for the preparation of the engineering plastics or the germicide.

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Suh, Myung-Koo;Sung, Woo-Kyung;Li, Guo-Sheng;Heo, Seong-Ung;Hwang, Hyun-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.318-324
    • /
    • 2003
  • A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.

Kinetic Studies on the Nucleophilic Addition of 3-Mercaptopropionic Acid to ${\beta},\;{\beta}$-Diethoxycarbonylstyrene Derivatives (${\beta},\;{\beta}$-Diethoxycarbonylstyrene 유도체에 대한 3-Mercaptopropionic Acid의 친핵성첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Yun-Chung Choi;Myung-Sook Chung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.127-134
    • /
    • 1989
  • The rate constants of the nucleophilic addition reaction of 3-mercaptopropionic acid to the ${\beta},\;{\beta}$-diethoxycarbonylstryene derivatives (H, p-OCH$_3$, 3,4,5-(OCH$_3)_3$, 3,4-methylenedioxy) were determined by ultraviolet spectrophotometry, and rate equation which could be applied over a wide pH range was obtained. On the basis of pH-rate profile and the presence of general base catalysis, a plausible mechanism of this addition reaction was propound:Below pH 6.0 the reaction was initiated by the addition of neutral 3-mercaptopropionic acid molecule, and in the range of pH 6.0∼8.0, a neutral 3-mercaptopropionic acid molecule and a sulfide anion competitively attacked to the double bond. Above pH 8.0, the reaction proceeded through the addition of a sulfide anion.

  • PDF

Kinetics and Mechanism for the Reaction of 4-Nitrophenyl 2-Thiophenecarboxylate with Secondary Alicyclic Amines

  • Um, Ik-Hwan;Lee, Eun-Ju;Lee, Jong-Pal
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.381-384
    • /
    • 2002
  • Second-order-rate constants ($k_N$) have been measured spectrophotometrically for the reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a) with a series of secondary alicyclic amines in H2O containing 20 mole % DMSO at 25.0 $^{\circ}C$ . The ester 1a is less reactive than 4-nitrophenyl 2-furoate (1b) but more reactive than 4-nitrophenyl benzoate (1c) except towards piperazinium ion. The Brønsted-type plots for the aminolyses of 1a, 1b and 1c are linear with a $\beta$nuc value of 0.92, 0.84 and 0.85, respectively, indicating that the replacement of the CH=CH group by a sulfur or an oxygen atom in the benzoyl moiety of 1c does not cause any mechanism change. The reaction of piperidine with a series of substituted phenyl 2-thiophenecarboxylates gives a linear Hammett plot with a large $\rho^-$ value ($\rho^-$ = 3.11) when $\sigma^- $ constants are used. The linear Brønsted and Hammett plots with large $\beta$nuc and $\rho^-$ values suggest that the aminolysis of 1a proceeds via rate-determining break-down of the addition intermediate to the products.

Studies on the Polarographic Kinetic Currents for the First Order Reactions at the Droping Mercury Electrode (水銀滴下電極에서 一次反應에 對한 포라로그라프電流에 關한 硏究)

  • Kim, Hwang-Am;Chin, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 1962
  • Solution to the diffusion layer for the first order reaction at a droping mercury electrode (D.M.E.) is presented. Equations are derived for polarographic currents for the reactions at the D.M.E. A factor which is applicable to the D.M.E. is derived, when we use the equations of the polarographic currents for the reactions at a plane electrode(P.E.), and the rate constants of the backward reactions are negligibly small. Polarographic currents from a combination of diffusions and reactions are obtained at the D.M.E. with special approximation. Rate constant for the reaction of ferrous ion with hydrogen-peroxide is determined at the D.M.E.,using the data of Kolthoff and Perry. The agreement of the equation with the data of Kolthoff and Perry for the kinetic current of ferric ion in the presence of hydrogen-peroxide is good. Ratios of diffusion layer at the D.M.E. to the diffusion layer at the P.E. are discussed and show that, when the rate constants of the backward reactions for the first order reactions are larger than 1/0.05 sec-1. and drop-time about 3 sec., these ratioes are about one.

  • PDF

The Stability of Piroxicam in Propylene Glycol (프로필렌글리콜에서의 피록시캄의 안정성)

  • Shin, Young-Shin;Shin, Young-Hee;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 1988
  • The stability and solubility of piroxicam in propylene glycol (PG), polyethylene glycol (PEC), and PG-water cosolvents have been studied by using high performance liquid chromatography. The degradation rate followed an apparent first-order kinetic and the reaction rate constants at 70, 80, and $90^{circ}C$ were determined. From these rate constants, the activation energy and the rate constant of piroxicam at $25^{circ}C$ in pure PG calculated by Arrhenius equation were 23.34 kcal/mole and $7.0\;{\times}\;10^{-4}\;day^{-1}$, respectively. Both of PG and PEG increased the solubility of the drug, but PEG was more effective.

  • PDF

Kinetic Studies on the Addition of Thiophenol to ${\alpha}$ N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee;Sang-Yong Pyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.301-303
    • /
    • 1991
  • The rate constants for the nucleophilic addition of thiophenol to $\alpha$, N-diphenylnitrone and it's derivatives (p-$OCH_3$, p-Cl, p-$NO_2$) were determined from pH 3.0 to 13.0 by UV spectrophotometry and rate equations which can be applied over a wide pH range were obtained. On the basis of rate equation, general base and substituent effect a plausible addition mechanism of thiophenol to ${\alpha}$, N-diphenylnitrone was proposed: At high pH, the addition of sulfide ion to carbon-nitrogen double bond was rate controlling, however, in acidic solution, reaction was proceeded by the addition of thiophenol molecule to carbon-nitrogen double bond after protonation at oxygen of ${\alpha}$, N-diphenylnitrone.

A Study of Hydrogen Desorption in Dy2Co7-H System (Dy2Co7-H System에서 수소(水素)의 Desorption에 관한 연구(硏究))

  • Nam, ln-Tak
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.47-51
    • /
    • 1981
  • A Kinetic model of desorption of hydrogen in $Dy_2Co_7-H$ system has been suggested and rate equation of each step of the model has been compared with experimental results. The reat controlling step was hydrogen recombination in metal surface. The activation energy of over-all reaction was about 23kcal/mole.

  • PDF