• 제목/요약/키워드: Reaction pathway(s)

검색결과 155건 처리시간 0.028초

Bisphenol 구조 유사체가 기수산 물벼룩 Ecdysteroid 경로에 미치는 영향 (Time-dependent Effects of Bisphenol Analogs on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis)

  • 인소연;이영미
    • 한국해양생명과학회지
    • /
    • 제6권2호
    • /
    • pp.73-79
    • /
    • 2021
  • 비스페놀A(BPA)는 대표적인 내분비계 교란물질로 광범위한 사용으로 인해 환경 내에서 지속적으로 검출됨에 따라 인간을 비롯한 다양한 생물에서 성장, 발생, 생식 등에 유해한 영향을 미치는 것으로 알려져 있다. 따라서 BPA를 대체하기 위한 구조 유사체들이 개발되어 널리 사용되고 있으나 이러한 대체제들이 내분비계 교란 작용을 갖는지에 대한 연구가 필요하다. 본 연구에서는 BPA와 그 구조 유사체인 BPS와 BPF에 노출시킨 기수산 물벼룩 Diaphanosoma celebensis에서 탈피과정에 관여하는 ecdysteroid 합성(nvd, cyp314a1), receptors (EcRA, EcRB, USP, ERR), 그리고 하위 경로에 있는 유전자(HR3, E75, Vtg, VtgR)의 시간 별 발현 변화를 조사하였다. nvd와 cyp314a1 유전자의 발현은 BPA 보다 BPF에서 6시간 일찍 발현이 증가하는 양상을 보인 반면, BPS의 경우에는 이들 유전자의 발현이 24시간 내내 감소하는 양상을 보였다. BPA와 BPF 노출 시 EcR 유전자들의 발현 양상도 이와 유사한 경향을 보였다. ERR 유전자의 발현은 BPF와 BPS에서 BPA 보다 6시간 일찍 발현이 증가하는 양상을 보였고, HR3, E75, VtgR의 유전자 발현도 노출군에서 시간 차이는 있지만 유의하게 증가하는 양상을 보였다. 반면 Vtg는 24시간 이내에서는 크게 증가하지는 않았다. 이러한 결과는 BPA 뿐 아니라 BPF와 BPS도 탈피에 관여하는 호르몬의 합성 및 조절 경로의 유전자의 발현을 조절할 수 있으며, 서로 다른 기전으로 기수산 물벼룩의 내분비계를 교란시킬 수 있는 능력을 갖는다고 볼 수 있다. 본 연구는 비스페놀 구조 유사체가 기수산 물벼룩의 탈피과정에 관여하는 분자 경로 어떻게 영향을 미치는지를 이해하는데 도움이 될 것이다.

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

백개자의 즉시형 과민 반응에 대한 억제 효과 (Inhibitory Effect of Semen Sinapis Albae on Immediate Hypersensitivity Reaction)

  • 이규영;홍철희
    • 한방안이비인후피부과학회지
    • /
    • 제27권4호
    • /
    • pp.177-188
    • /
    • 2014
  • 목적 : 본 연구에서는 백개자 열수추출물이 활성화된 대식세포 및 사람 비만세포주, HMC-1에서 염증 반응을 효과적으로 억제하는가를 관찰하고자 하였다. 방법 : 대식세포에 여러 농도의 백개자 열수추출물을 가한 뒤 LPS로 염증을 유도하여 NO 생산, iNOS와 COX-2 단백질 발현을 관찰하였으며 HMC-1에도 여러 농도의 백개자 열수추출물을 가한 후 PMACI로 염증을 유도하여 histamine 분비와 NF-${\kappa}B$ 활성 및 $I{\kappa}B$-${\alpha}$의 인산화, MAPKs pathway에 대한 저해효과를 관찰하였다. 결과 : 백개자 열수추출물은 대식세포에서 LPS로 유도된 NO 생성 및 INOS, COX-2 단백질 발현을 농도 의존적으로 저해하였으며 HMC-1에서 PMACI로 유도된 histamine의 분비와 p38 MAPK, ERK, JNK의 인산화 반응 및 $I{\kappa}B$-${\alpha}$의 인산화와 NF-${\kappa}B$의 활성을 저해하였다. 결론 : 백개자 열수추출물은 대식세포 및 비만세포의 활성을 저해함으로써 알레르기 질환의 치료에 사용될 잠재성이 크다고 사료된다.

Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride

  • Kim, Soo Ryeon;Choi, Hojune;Park, Jong Keun;Koo, In Sun;Koh, Han Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.51-56
    • /
    • 2014
  • The solvolysis rate constants of 2,4-dimethoxybenzenesulfonyl chloride (1) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and $Y_{Cl}$ solvent ionizing scale, with sensitivity values of $0.93{\pm}0.14$ and $0.65{\pm}0.06$ for l and m, respectively. These l and m values can be considered to support a $S_N2$ reaction pathway. The activation enthalpies (${\Delta}H^{\neq}$) were 12.4 to $14.6kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) were -15.5 to -$32.3kcal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is consistent with the proposed bimolecular reaction mechanism. The solvent kinetic isotope effects (SKIE) were 1.74 to 1.86, which is also in accord with the $S_N2$ mechanism and was possibly assisted using a general-base catalysis. The values of product selectivity (S) for solvolyses of 1 in alcohol/water mixtures was 0.57 to 6.5, which is also consistent with the proposed bimolecular reaction mechanism. Third-order rate constants, $k_{ww}$ and $k_{aa}$, were calculated from the rate constants ($k_{obs}$), together with $k_{aw}$ and $k_{wa}$ calculated from the intercept and slope of the plot of 1/S vs. [water]/[alcohol]. The calculated rate constants, $k_{calc}$ ($k_{ww}$, $k_{aw}$, $k_{wa}$ and $k_{aa}$), are in satisfactory agreement with the experimental values, supporting the stoichiometric solvation effect analysis.

2-염화티오펜술포닐의 가용매 분해반응 (Solvolysis of 2-Thiophenesulfonyl Chloride)

  • 최진철;오지은;강대호;구인선;이익춘
    • 대한화학회지
    • /
    • 제37권8호
    • /
    • pp.695-701
    • /
    • 1993
  • 25$^{\circ}C$에서 메탄올, 에탄올, 아세톤 이성분 혼합수용액과 물, 메탄올에서의 가용매분해반응 속도 상수를 결정하고, 이들 속도자료를 Grunwald-Winstein 식과 Kivinen 관계식을 이용하여 해석하였다. 또한 물과 메탄올에서의 속도론적 용매 동위원소 효과와 알코올-물 혼합용매계에서 생성물 선택성 값을 결정하였다. 염화 2-티오펜술포닐의 가용매 분해반으에 대한 속도론적 용매 동위원소 효과는 메탄올과 물에서 각가 2.24와 1.47이었다. 에탄올-물에서의 술포닐 에스테르 형성에 대한 선택성 값은 최대값을 나타내었다. 메탄올과 물에서의 속도론적 용매 동위원소 효과, 알코올 수용액에서의 선택성 자료와 용매효과로부터, 본 연구에서의 반응은 극성이 낮은 용매계에서는 일반염기 촉매반응과 또는 S$_A$N 반응이 유리하고, 극성이 큰 용매계에서는 S$_N$2 반응의 유리한 반응으로 진행되는 것으로 제안하였다.

  • PDF

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Glucose and Its Role in Generating Reactive Oxygen Species Required for Mouse Sperm Fertilizing Ability

  • Lin, S.C.;Chen, M.C.;Huang, A.J.;Salem, B.;Li, K.C.;Chou, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권6호
    • /
    • pp.748-756
    • /
    • 2000
  • Effects of xanthine (X), xanthine oxidase (XO), and catalase (C), $H_2O_2$, and carbohydrates on sperm capacitation, acrosome reaction, and fertilizing ability in vitro were examined. Glucose alone, but not fructose, supported the maximum rate of sperm capacitation and acrosome reaction. However, in the combination of X, XO, and C (XXOC) or $H_2O_2$, fructose alone also supported maximum capacitation, acrosome reaction, and fertilization. Either insufficient or excessive amounts of $H_2O_2$ decreased sperm capacitation and the acrosome reaction. In order to understand how glucose generates $H_2O_2$ or other reactive oxygen species in sperm cells, 6-aminonicotinamide, an inhibitor of the pentose-phosphate pathway (PPP), and apocynin, an inhibitor of NADPH oxidase, were added to sperm suspensions in glucose-containing medium. Results appeared that sperm capacitation, acrosome reaction, and fertilization were consequently inhibited by either one of these compounds. These inhibitory effects were nullified by addition of XXOC. These results support the hypothesis that glucose, in addition to being a substrate for glycolysis, facilitates sperm capacitation and the acrosome reaction by generating reactive oxygen species through G-6-P dehydrogenase and NADPH oxidase.

Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway

  • Lorz, Laura Rojas;Kim, Donghyun;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.453-460
    • /
    • 2020
  • Background: BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive effects on allergic reactions in skin have not yet been described in detail, this study's main objective was to determine its efficacy in the treatment of atopic dermatitis (AD). Methods: High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both anti-DNP-IgE/DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187 alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent assay) and β-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells, we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38, and c-Jun N-terminal kinase proteins by immunoblotting. Results: BIOGF1K decreased the AD response by reducing both histamine and β-hexosaminidase release as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells. Conclusions: BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural approach for treating AD.

Effects of Oxidative Stress on the Expression of Aldose Reductase in Vascular Smooth Muscle Cells

  • Kim, Hyo-Jung;Chang, Ki-Churl;Seo, Han-Geuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.271-278
    • /
    • 2001
  • Oxidative stress and methylglyoxal (MG), a reactive dicarbonyl metabolites produced by enzymatic and non-enzymatic reaction of normal metabolism, induced aldose reductase (AR) expression in rat aortic smooth muscle cells (SMC). AR expression was induced in a time-dependent manner and reached at a maximum of 4.5-fold in 12 h of MG treatment. This effect of MG was completely abolished by cyclohemide and actinomycin D treatment suggesting AR was synthesized by de novo pathway. Pretreatment of the SMC with N-acetyl-L-cysteine significantly down-regulated the MG-induced AR mRNA. Furthermore, DL-Buthionine-(S,R)-sulfoximine, a reagent which depletes intracellular glutathione levels, increased the levels of MG-induced AR mRNA. These results indicated that MG induces AR mRNA by increasing the intracellular peroxide levels. Aminoguanidine, a scanvenger of dicarbonyl, significantly down-regulated the MG-induced AR mRNA. In addition, the inhibition of AR activities with statil, an AR inhibitor, enhanced the cytotoxic effect of MG on SMC under normal glucose, suggesting a protective role of AR against MG-induced cell damages. These results imply that the induction of AR by MG may contribute to an important cellular detoxification of reactive aldehyde compounds generated under oxidative stress in extrahepatic tissues.

  • PDF

Kinetics and Stereochemistry of CO Substitution Reactions of Half-Open Chromocene Carbonyls(Ⅲ): Reactions of $Cp^{*}(\eta^{5}-C_{5}H_{7})$CrCO and Phosphines

  • Jong-Jae Chung;Byung-Gill Roh;Yu-Chul Park
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.549-554
    • /
    • 1993
  • The CO substitution reactions in the complex, $Cp^*(C_5H_7)$CrCO with $PR_3(PR_3=PMePh_2,\;P(OCH_3)_3,\;PMe_2Ph)$ were investigated spectrophotometrically at various temperatures. For the reaction rates, it was suggested that the CO substitution reaction took place by first-order (dissociative) pathway. Activation parameters in decaline are ${\Delta}H^{\neq}= 21.99{\pm}2.4$ kcal/mol, ${\Delta}S^{\neq}= 8.9{\pm}7.1$ cal/mol·k. Unusually low value of ${\Delta}S^{\neq}$, suggested an ${\eta}^5-S{\to}\;{\eta}^5$-U conversion of the pentadienyl ligand. At various temperature, the rates of reaction for the Cp(pdl)CrCO complexes increase in the order $Cp^*(C_5H_7)$-CrCO < Cp$(C_5H_7)$CrCO < Cp(2,4-$C_5H_{11}$)CrCO, which can be attributed to the usual steric acceration or electronic influence for the ligand substitution of metal complexes. This suggestion was confirmed by the extended-Huckel molecular orbital (EHMO) calculations, which revealed that the energy of $[Cp^*(U-C_5H_7)Cr]^{\neq}$ transition state is about 4.93 kcal/mol lower than that of [Cp(S-$C_5H_7)Cr]^{\neq}$ transition state, and the arrangement of the overlap populations between Cr and the carbon of CO is $Cp^*(C_5H_7)$CrCO > Cp($C_5H_7$)CrCO > Cp(2,4-$C_7H_{11}$)CrCO.