Browse > Article
http://dx.doi.org/10.23005/ksmls.2021.6.2.73

Time-dependent Effects of Bisphenol Analogs on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis  

In, Soyeon (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Lee, Young-Mi (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Publication Information
Journal of Marine Life Science / v.6, no.2, 2021 , pp. 73-79 More about this Journal
Abstract
Bisphenol A is a representative endocrine disruptor and continuously detected in aquatic environment due to wide use, resulting in adverse effects on growth, development, and reproduction in diverse organisms as well as human. Structural analogs have been developed to substitute BPA are also suspected to have endocrine disrupting effects. In the present study, the time-dependent expression patterns of ecdysteroid synthesis (nvd, cyp314a1), receptors (EcRA, EcRB, USP, ERR), and downstream signaling pathway - related genes (HR3, E75, Vtg, VtgR) were investigated using quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) in the brackish water flea Diaphanosoma celebensis exposed to Bisphenol analogs (BPs; BPA, BPF, and BPS) for 6, 12, and 24 h. As results, the expression of nvd, cyp314a1, EcRs, USP, ERR and E75 mRNA was upregulated at 6 h exposure to BPF, which is earlier than BPA and BPS (12 h). On the other hand, HR3, E75 and VtgR mRNA levels were elevated at 6 h earlier at BPS and BPF than at BPA (12 h), but Vtg mRNA level was slightly changed within 24 h. These findings suggest that like BPA, BPF and BPS can also modulate the transcription of ecdysteroid pathway - related genes with different mechanisms, and have a potential as endocrine disruptors. This study will provide a better understanding the molecular mode of action of bisphenols on ecdysteroid pathway in the brackish water flea.
Keywords
Bisphenol A; Bisphenol F; Bisphenol S; Ecdysteroid; Brackish water flea;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Herrero O, Aquilino M, Scanchez-Arguello P, Planello R. 2018. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLOS ONE 13: e0193387. https://doi.org/10.1371/journal.pone.0193387.   DOI
2 In S, Cho H, Lee KW, Won EJ, Lee YM. 2020. Cloning and molecular characterization of estrogen-related receptor (ERR) and vitellogenin genes in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A and its structural analogues. Mar Pollut Bullet 154: 111063.   DOI
3 In S, Cho H, Lee YM. 2021. Identification of ecdysteroid pathwayrelated genes and their transcriptional modulation in the brackish water flea Diaphanosoma celebensis exposed to bisphenol analogs. Toxicol Environ Health Sci 13: 261-268.   DOI
4 Jin W, Jia Y, Tan E, Xi G. 2017. Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae). Sci Nat 104: 97.   DOI
5 Kim BM, Kang S, Kim RO, Jung JH, Lee KW, Rhee JS, Lee YM. 2018. De novo transcriptome assembly of brackish water flea Diaphanosoma celebensis based on short-term cadmium and benzo[a]pyrene exposure experiments. Hereditas 155: 36.   DOI
6 Lafont R, Mathieu M. 2007. Steroids in aquatic invertebrates. Ecotoxicology 16: 109-130.   DOI
7 Hannas BR, Wang YH, Thomson S, Kwon G, Li H, LeBlanc GA. 2011. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna). Aquat Toxicol 101: 351-357.   DOI
8 Hwang DS, Han J, Won EJ, Kim DK, Jeong CB, Hwang UK, Zhou B, Choe J, Lee JS. 2016. BDE-47 causes developmental retardation with downregulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus. Aquat Toxicol 177: 285-294.   DOI
9 In S, Yoon HW, Yoo JW, Cho H, Kim RO, Lee YM. 2019. Acute toxicity of bisphenol A and its structural analogues and transcriptional modulation of the ecdysone-mediated pathway in the brackish water flea Diaphanosoma celebensis. Ecotoxicol Environ Saf 179: 310-317.   DOI
10 Lafont R, Dauphin-Villemant C, Warren JT, Rees H. 2005. Ecdysteroid chemistry and biochemistry. In: Gilbert LI, Iatrou K, Gill S. (Eds.), Comprehensive Molecular Insect Science, vol. 3. Elsevier, Oxford, pp 125-195.
11 Morales M, Martinez-Paz P, Martin R, Planello R, Urien J, Martinez-Guitarte JL, Morcillo G. 2014. Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquat Toxicol 157: 1-9.   DOI
12 Sumiya E, Ogino Y, Miyakawa H, Hiruta C, Toyota K, Miyagawa S, Iguchi T. 2014. Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna. Front Zool 11: 60.   DOI
13 Sumiya E, Ogino Y, Toyota K, Miyakawa H, Miyagawa S, Iguchi T. 2016. Neverland regulates embryonic moltings through the regulation of ecdysteroid synthesis in the water flea Daphnia magna, and may thus act as a target for chemical disruption of molting. J Appl Toxicol 36: 1476-1485.   DOI
14 Laudet V. 1997. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19: 207-226.   DOI
15 Marcial HS, Hagiwara A. 2007. Multigenerational effects of 17b-estradiol and nonylphenol on euryhaline cladoceran Diaphanosoma celebensis. Fish Sci 73: 324-330.   DOI
16 Naderi M, Wong MY, Gholami F. 2014. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol 148: 195-203.   DOI
17 Nakagawa Y, Henrich VC. 2009. Arthropod nuclear receptors and their role in molting. FEBS J 276: 6128-6157.   DOI
18 Rochester JR, Bolden AL. 2015. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123: 643-650.   DOI
19 Segner H, Caroll K, Genske M, Janssen CR, Maack G, Pascoe D, Schafers C, Vandenbergh GF, Watts M, Wenzel A. 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54: 302-314.   DOI
20 Talbot WS, Swyryd EA, Hogness DS. 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73: 1323-1337.   DOI
21 Won EJ, Kim D, Yoo JW, In S, Shin KH, Lee YM. 2021. Oxidative stress responses in brackish water flea exposed to microcystin-LR and algal bloom waters from Nakdong River, Republic of Korea. Mar Pollut Bull 162: 111868.   DOI
22 Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M, Cherbas P, Evans RM. 1993. Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366: 476-479.   DOI
23 Cabaton N, Dumont C, Severin I, Perdu E, Zalko D, Cherkaoui-Malki M, Chagnon MC. 2009. Genotoxic and endocrine activities of bis(hydroxyphenyl)methane (bisphenol F) and its derivatives in the HepG2 cell line. Toxicology 255: 15-24.   DOI
24 Yoo JW, Cho H, Lee KW, Won EJ, Lee YM. 2021. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol Part C 239: 108863.   DOI
25 Zhong L, Yuan L, Rao Y, Li Z, Zhang X, Liao T, Xu Y, Dai H. 2014. Distribution of vitellogenin in zebrafish (Danio rerio) tissues for biomarker analysis. Aquat Toxicol 149: 1-7.   DOI
26 Zhu J, Chen L, Sun G, Raikhel AS. 2006. The competence factor βFtz-F1 potentiates ecdysone receptor activity via recruiting a p160/SRC coactivator. Mol Cell Biol 26: 9402-9412.   DOI
27 Beausoleil C, Emond C, Cravedi JP, Antignac JP, Applanat M, Appenzeller BMR, Beaudouin R, Belzunces LP, Canivenc-Lavier MC, Chevalier N, Chevrier C, Elefant E, Eustache F, Habert R, Kolf-Clauw M, Le Magueresse-Battistoni B, Mhaouty-Kodja S, Minier C, Multigner L, Schroeder H, Thonneau P, Viguie C, Pouzaud F, Ormsby JN, Rousselle C, Verines-Jouin L, Pasquier E, Michel C. 2018. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol Cell Endocrinol 475: 4-9.   DOI
28 Andersen HR, Wollenberger L, Halling-Sorensen B, Kusk KO. 2001. Development of copepod nauplii to copepodites - a parameter for chronic toxicity including endocrine disruption. Environ Toxicol Chem 20: 2821-2829.   DOI
29 Bae C, Kim RO, Kim JS, Lee YM. 2018. Acute Toxicity and Modulation of an Antioxidant Defence System in the Brackish Water Flea Diaphanosoma celebensis Exposed to Cadmium and Copper. Toxicol Environ Health Sci 10: 186-193.   DOI
30 Bardet PL, Laudet V, Vanacker JM. 2006. Studying non-mammalian models? Not a fool's ERRand! Trends Endocrinol Metab 17: 166-171.   DOI
31 Canesi L, Fabbri E. 2015. Environmental effects of BPA: Focus on aquatic species. Dose Response 13: 1-14.
32 Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M. 2016. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity - A review. Environ Sci Technol 50: 5438-5453.   DOI
33 Ghekiere A, Verslycke T, Janssen C. 2006. Effects of methoprene, nonylphenol, and estrone on the vitellogenesis of the mysid Neomysis integer. Gen Comp Endocrinol 147: 190-195.   DOI
34 Hannas BR, LeBlanc GA. 2010. Expression and ecdysteroid responsiveness of the nuclear receptors HR3 and E75 in the crustacean Daphnia magna. Mol Cell Endocrinol 315: 208-218.   DOI
35 Park K, Kwak I-S. 2010. Molecular effects of endocrine-disrupting chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere 79: 934-941.   DOI
36 Liao C, Liu F, Moon H-B, Yamashita N, Yun S, Kannan K. 2012. Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environ Sci Technol 46: 11558-11565.   DOI
37 Miyakawa H, Sato T, Song Y, Tollefsen KE, Iguchi T. 2018. Ecdysteroid and juvenile hormone biosynthesis, receptors and their signaling in the freshwater microcrustacean Daphnia. J Steroid Biochem Mol Biol 184: 62-68.   DOI
38 Nagasawa K, Treen N, Kondo R, Otoki Y, Itoh N, Rotchell JM, Osada M. 2015. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 564: 153-159.   DOI
39 Planello R, Martinez-Guitarte JL, Morcillo G. 2008. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71: 1870-1876.   DOI
40 Roth Z, Khalaila I. 2012. Identification and characterization of the vitellogenin receptor in Macrobrachium rosenbergii and its expression during vitellogenesis. Mol Reprod Dev 79: 478-487.   DOI
41 Nair PMG, Choi J. 2012. Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33: 98-106.   DOI
42 Gismondi E. 2018. Identification of molt-inhibiting hormone and ecdysteroid receptor cDNA sequences in Gammarus pulex, and variations after endocrine disruptor exposures. Ecotoxicol Environ Saf 158: 9-17.   DOI
43 Hayward A, Takahashi T, Bendena WG, Tobe SS, Hui JHL. 2010. Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Letters 584: 1273-1278.   DOI