• Title/Summary/Keyword: Reaction parameter

Search Result 477, Processing Time 0.023 seconds

Nano-Floating Gate Memory Devices with Metal-Oxide Nanoparticles in Polyimide Dielectrics

  • Kim, Eun-Kyu;Lee, Dong-Uk;Kim, Seon-Pil;Lee, Tae-Hee;Koo, Hyun-Mo;Shin, Jin-Wook;Cho, Won-Ju;Kim, Young-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • We fabricated nano-particles of ZnO, $In_2O_3$ and $SnO_2$ by using the chemical reaction between metal thin films and polyamic acid. The average size and density of these ZnO, $In_2O_3$ and $SnO_2$ nano-particles was approximately 10, 7, and 15 nm, and $2{\times}10^{11},\;6{\times}10^{11},\;2.4{\times}10^{11}cm^{-2}$, respectively. Then, we fabricated nano-floating gate memory (NFGM) devices with ZnO and $In_2O_3$ nano-particles embedded in the devices' polyimide dielectrics and silicon dioxide layers as control and tunnel oxides, respectively. We measured the current-voltage characteristics, endurance properties and retention times of the memory devices using a semiconductor parameter analyzer. In the $In_2O_3$ NFGM, the threshold voltage shift (${\Delta}V_T$) was approximately 5 V at the initial state of programming and erasing operations. However, the memory window rapidly decreased after 1000 s from 5 to 1.5 V. The ${\Delta}V_T$ of the NFGM containing ZnO was approximately 2 V at the initial state, but the memory window decreased after 1000 s from 2 to 0.4 V. These results mean that metal-oxide nano-particles have feasibility to apply NFGM devices.

Deuterium Ion Implantation for The Suppression of Defect Generation in Gate Oxide of MOSFET (MOSFET 게이트 산화막내 결함 생성 억제를 위한 효과적인 중수소 이온 주입)

  • Lee, Jae-Sung;Do, Seung-Woo;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.23-31
    • /
    • 2008
  • Experiment results are presented for gate oxide degradation under the constant voltage stress conditions using MOSFETs with 3-nm-thick gate oxides that are treated by deuterium gas. Two kinds of methods, annealing and implantation, are suggested for the effective deuterium incorporation. Annealing process was rather difficult to control the concentration of deuterium. Because the excess deuterium in gate oxide could be a precursor for the wear-out of gate oxide film, we found annealing process did not show improved characteristics in device reliability, compared to conventional process. However, deuterium implantation at the back-end process was effective method for the deuterated gate oxide. Device parameter variations as well as the gate leakage current depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to those of conventional process. Especially, we found that PMOSFET experienced the high voltage stress shows a giant isotope effect. This is likely because the reaction between "hot" hole and deuterium is involved in the generation of oxide trap.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Implementation of Biosensor Pattern Using Micro Patterning Technique (미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Yang, Young Jin;Kim, Hyun Bum;Yang, Seong Wook;Oh, Seung Ho;Doh, Yang Hoi;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

Mixture Fraction Analysis on the Combustion Gases of the Full-Scale Compartment Fires (실규모 구획화재의 연소가스에 대한 혼합분율 분석)

  • Ko, Gwon-Hyun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • In this study, a mixture fraction analysis was performed to investigate the characteristics of chemical species production in compartment fires burning hydrocarbon fuels such as methane, heptane, and toluene. A series of fire experiments was conducted in the ISO 9705 standard room, and gas species concentration and soot fraction were measured at two locations in the upper layer of the compartment. The mass fractions of measured chemical species, such as unburned hydrocarbons (UHC), carbon monoxide (CO), carbon dioxide ($CO_2$), oxygen ($O_2$), and soot were presented as a function of mixture fraction and compared with state relationships based on the idealized reaction of hydrocarbon fuels. The mixture fraction analysis made it possible to rearrange hundreds of species measurements, which were done under various fire conditions and at two locations of the upper layer, in term of the unified parameter, i.e. the mixture fraction. The results also showed that inclusion of soot in the mixture fraction calculation could improve the performance of analysis, especially for the sooty fuels such as heptane and toluene.

Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon (활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.206-213
    • /
    • 2017
  • The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor ($R_L=0.02{\sim}0.106$), this process could be employed as an effective treatment (0 < $R_L$ < 1). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.

Discharge Capacity Fading of LiCoyMn2-yO4 with Cycling

  • Kwon, Ik-Hyun;Song, Myoung-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.620-624
    • /
    • 2003
  • LiCo$_{y}$Mn$_{2-y}$O$_4$ samples were synthesized by calcining a mixture of LiOH.$H_2O$, MnO$_2$ (CMD) and CoCO$_3$ calcining at 40$0^{\circ}C$ for 10 h and then calcining twice at 75$0^{\circ}C$ for 24 h in air with intermediate grinding. All the synthesized samples exhibited XRD patterns for the cubic spinel phase with a space group Fd(equation omitted)m. The electrochemical cells were charged and discharged for 30 cycles at a current density 600 $mutextrm{A}$/$\textrm{cm}^2$ between 3.5 and 4.3 V. As the value of y increases, the size of particles becomes more homogeneous. The first discharge capacity decreases as the value of y increases, its value for y=0.00 being 92.8 mAh/g. The LiMn$_2$O$_4$ exhibits much better cycling performance than that reported earlier. The cycling performance increases as the value of y increases. The efficiency of discharge capacity is 98.9% for y=0.30. The larger lattice parameter for the smaller value of y is related to the larger discharge capacity. The more quantity of the intercalated and the deintercalated Li in the sample with the larger discharge capacity brings about the larger capacity fading rate.ate.

Preparation of Alumina-Silica Composite Coatings by Electrophoretic Deposition and their Electric Insulation Properties (EPD 방법을 이용한 알루미나-실리카 복합 코팅막의 제조와 전기절연 특성)

  • Ji, Hye;Kim, Doo Hwan;Park, Hee Jeong;Lim, Hyung Mi;Lee, Seung-Ho;Kim, Dae Sung;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.177-183
    • /
    • 2014
  • Alumina-silica composite coating layers were prepared by electrophoretic deposition (EPD) of plate-shaped alumina particles dispersed in a sol-gel binder, which was prepared by hydrolysis and the condensation reaction of methyltrimethoxysilane in the presence of colloidal silica. The microstructure and the electrical and thermal properties of the coatings were compared according to the EPD process parameter: voltage, time and the content of the plate-shaped alumina particles. The electrical insulation property of the coatings was measured by a voltage test. The coatings were prepared by EPD of the sol-gel binder with 5-30 wt% plate alumina particles on parallel electrodes at a distance of 2 cm for 1-10 min under an applied voltage of 10-30 V. The coatings experienced increased breakdown voltage with increasing thickness. However, the higher the thickness was, the smaller the breakdown voltage strength was. A breakdown voltage as high as 4.6 kV was observed with a $400{\mu}m$ thickness, and a breakdown voltage strength as high as 27 kV/mm was achieved for the sample under a $100{\mu}m$ thickness.