• Title/Summary/Keyword: Reaction model

Search Result 2,852, Processing Time 0.026 seconds

Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance (열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구)

  • Noh, Junghun;Jung, Hye-Mi;Jung, Un-Ho;Yoon, Wang-Lai;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

Transesterification Kinetics of Dimethyl Terephthalate with 1,4-Butanediol (디메틸테레프탈레이트와 1,4-부탄디올의 에스테르교환 반응 특성)

  • Cho, Impyo;Lee, Jinhong;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.58-67
    • /
    • 2013
  • PBT (polybutylene terephthalate) has excellent mechanical properties such as low absorption, dimensional stability, abrasion resistance. It is used in manufacturing electronic components, the automobile part and the various precise parts. Bis (hydroxybutyl) terephthalate (BHBT) which is a PBT monomer, can be produced by transesterification reaction of DMT (dimethyl terephthalate) with 1,4-butandiol (BD). The kinetics of transesterification reaction of DMT with BD using zinc acetate as a catalyst was studied in a batch reactor. Previous kinetic studies was carried out in a semibatch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous models was obtained and found to have a good agreement between model predictions and experimental data.

Transesterification of Dimethyl Terephthalate with Ethylene Glycol (Dimethyl terephthalate와 ethylene glycol의 에스테르 교환 반응)

  • Lee, Jinhong;Cho, Impyo;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.144-150
    • /
    • 2013
  • The kinetics of the transesterification of dimethyl terephthalate (DMT) with ethylene glycol (EG) was studied in a batch reactor. Bishydroxyethyl terephthalate (BHET), which is poly(ethylene terephthalate) (PET) monomer, can be produced by the transesterification reaction. Zinc acetate was used as a catalyst. Previous kinetic studies was carried out in a semi-batch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the tranesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous ones were obtained and found to have a good agreement between model predictions and experimental data. Effect of process variables on the esterification reaction was investigated based on the experimental and simulation results.

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

Some Calculated (p,α) Cross-Sections Using the Alpha Particle Knock-On and Triton Pick-Up Reaction Mechanisms: An Optimisation of the Single-Step Feshbache-Kermane-Koonin (FKK) Theory

  • Olise, Felix S.;Ajala, Afis;Olaniyi, Hezekiah B.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.482-494
    • /
    • 2016
  • The Feshbache-Kermane-Koonin (FKK) multi-step direct (MSD) theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,${\alpha}$) reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core) by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process) and proton-triton (for the pick-up process) interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

Development of a Stream Water Quality Model (QUAL-NIER) for the Management of Total Maximum Daily Loads (수질오염총량관리를 위한 하천수질모델(QUAL-NIER) 개발)

  • Park, Jun Dae;Shin, Dong Seok;Kim, Moon Sook;Kong, Dong Soo;Rhew, Doug Hee;Jung, Dong-Il;Na, Eun Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.784-792
    • /
    • 2008
  • Greater focus must be placed on ensuring that the water quality model (WQM) reflects the objective of its application and the characteristics of the water environment properly before it is selected. In the development or application of WQM, various factors influencing the model predictions should be reviewed so that it can perform more properly and reasonably based on scientific theory. This study reviewed the characteristic of existing WQM and the domestic river environment to find the requirements of the model application for TMDLs management in Korea. In this study, a water quality model, QUAL-NIER, was developed based on the USEPA's QUAL2E. The core structure and reaction scheme of the model was established followed by the formulation of equations according to the scheme with some supplements on the reaction mechanisms which are necessary for domestic rivers. Algorithms on the equations were set up and programmed to form a computer-based model. The developed model, QUAL-NIER was applied to the main stem of the Nakdong river. The model was calibrated and verified to data measured in 2004. The model results displayed good agrement with the field measurements for both calibration and verification. From this study, it was concluded that the developed QUAL-NIER model was very powerful with regard to the water quality simulation in domestic rivers.

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.