• 제목/요약/키워드: Reaction gas

검색결과 2,901건 처리시간 0.026초

천연가스의 수증기 개질에서 수성가스 전환용 충진층 반응기의 전산모사 (Packed Bed Reactor Simulation for the Water Gas Shift Reaction in the Steam Reforming of Natural Gas)

  • 이득기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.494-502
    • /
    • 2016
  • A 1-dimensional heterogeneous reactor model with the gas-solid interfacial phase gradients was developed for the simulation of the packed bed reactor where the exothermic reversible water gas shift reaction for the natural gas steam reformed gas was proceeding in adiabatic mode. Experimental results obtained over the WGS catalyst, C18-HA, were best simulated when the frequency factor of the reaction rate constant was adjusted to a half the value reported over another WGS catalyst, EX-2248, having the same kinds of active components as the C18-HA. For the reactor of the inside diameter 158.4 mm and the bed length 650 mm, the optimum feeding temperature of the reformed gas was simulated to be $194^{\circ}C$, giving the lowest CO content in the product gas by 1.68 mol% on the basis of dried gas. For reactors more extended in the bed length, the possible lowest CO content in the product gas with the optimum feeding temperature of the reformed gas were suggested.

기체 고체 반응기 모형의 응용: 환원로 반응 모형 고찰 (The Application of Gas-Solid Reactor Model: Consideration of Reduction reaction model)

  • 엄민제;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.79-82
    • /
    • 2012
  • The gas-solid reactor, such as rotary kiln, sintering bed, incinerator and CFB boiler, is the one of most widely used industrial reactors for contacting gases and solids. the gas-solid reactor are mainly used for drying, calcining and reducing solid materials. In the gas-solid reactor, heat is supplied to the outside of the wall or inside of the reactor. The heat transfer in gas-solid reactor encompasses all the modes of transport mechanisms, that is, conduction, convection and radiation. The chemical reactions occurring in the bed are driven by energy supplied by the heat transfer. This paper deal with the effect of heat transfer and chemical reaction in the gas-solid reactor.

  • PDF

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor)

  • 류호정;현주수;김하나;황택성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.205-214
    • /
    • 2002
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of $H_2(g)$ is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming $H_2$, most of the reaction energy is carried by $H_2(g)$. Although the majority of $H_2(g)$ molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of $H_2(g)$ produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of $H_2(g)$ is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the $H_2(g)$ formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.

나로호 질소가스 추력기시스템 자세제어기 설계 및 종합성능시험 (Controller Design and Integrated Performance Tests on Nitrogen-Gas Reaction Control System of KSLV-I)

  • 선병찬;박용규;오충석;노웅래
    • 항공우주기술
    • /
    • 제11권2호
    • /
    • pp.195-207
    • /
    • 2012
  • 본 논문에서는 나로호 질소가스 추력기시스템에 대한 자세제어기 설계 과정과 종합성능 시험에 대해 다루고 있다. 발사체의 비행 안정성을 보장하도록 추력기 자세제어기 설계를 수행하는 데 있어서 반드시 고려해야 할 주요 사항들에 대해 살펴보고 관계식을 제시하였다. 나로호 질소가스추력기 시스템에 대한 시스템레벨 종합성능시험을 위한 시험구성과 시험조건 등을 정리하였고, 성능시험 데이터로부터 추력기 시스템의 가스 소모량, 추력, 시간 지연, 비추력 특성 등의 운용 성능과 추력기 자세제어기의 비행 적합성 평가가 가능함을 보였다. 최종적으로, 1차 비행시험 결과를 통해, 나로호 탑재 추력기 자세제어시스템이 충분한 안정성 여유을 가지고 정상적으로 동작하였음을 보였다.

레이저 국소증착법에 의한 탄소 미세 구조물의 제조시 성장특성에 관한 연구 (Growth Characteristics of Micro Carbon Structures Fabricated by Laser-Assisted Chemical Vapor Deposition)

  • 김진범;이선규;이종현;정성호
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.106-115
    • /
    • 2002
  • Growth characteristics of micro carbon structures fabricated by laser-assisted chemical vapor deposition are studied. Argon ion laser and ethylene were used as the energy source and reaction gas, respectively, to grow micro carbon rod through pyrolytic decomposition of the reaction gas. Experiments were performed at various conditions to investigate the influence of process parameters on growth characteristics such as the diameter or growth rate of the micro carbon rod with respect to reaction gas pressure and incident laser power. Reaction gas pressure in experiments ranges from 200 to 600Torr and the incident laser power from 0.3 to 3.8W. For these conditions, the diameter of the rod increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below IW. For a constant reaction gas pressure, the growth rate increase with Increasing laser power, but the rate of increase decreases gradually, implying that the chemical vapor deposition condition changes from a kinetically-limited regime to a mass-transport-limited regime. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 287${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated..

기상반응에 의한 $Si_3N_4$ 미세분말의 합성 (Synthesis of Ultrafine Silicon Nitride Powders by the Vapor Phase Reaction)

  • 유용호;어경훈;소명기
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.44-49
    • /
    • 2000
  • Silicon nitride powders, were synthesized by the vapor phase reaction using SiH4-NH3 gaseous mixture. The reaction temperature, ratio of NH3 to SiH4 gas and the overall gas quantity were varied. The synthesized powders were characterized using X-ray, TEM, FT-IR and EA. The synthesized silicon nitride powders were in amorphous state, and the average particle size was about 100nm. TEM analysis revealed that the particle size decreased with increasing reaction temperature and gas flow quantity. As-received amorphous powders were annealed in nitrogen atmosphere at 140$0^{\circ}C$ for 2h, then the powders were completely crystallized at 0.2 ratio of NH3 to SiH4.

  • PDF

Effect of Process Parameters of UV Enhanced Gas Phase Cleaning on the Removal of PMMA (Polymethylmethacrylate) from a Si Substrate

  • Kwon, Sung Ku;Kim, Do Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권4호
    • /
    • pp.204-207
    • /
    • 2016
  • Experimental study of UV-irradiated O2/H2 gas phase cleaning for PMMA (Polymethylmethacrylate) removal is carried out in a load-locked reactor equipped with a UV lamp and PBN heater. UV enhanced O2/H2 gas phase cleaning removes polymethylmethacrylate (PMMA) better at lower process pressure with higher content of H2. O2 gas compete for UV (184.9 nm) absorption with PMMA producing O3, O(1D) and lower dissociation of PMMA. In our experimental conditions, etching reaction of PMMA at the substrate temperature between 75℃ and 125℃ had activation energy of about 5.86 kcal/mol indicating etching was controlled by surface reaction. Above the 180℃, PMMA removal was governed by a supply of reaction gas rather than by substrate temperature.

밀리미터 스케일 촉매 연소기에서의 수소-공기 예혼합 가스의 촉매 연소 특성 (Catalytic Combustion Characteristics of Hydrogen-Air Premixture in a Millimeter Scale Monolith Coated with Platinum)

  • 최원영;권세진
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.20-26
    • /
    • 2005
  • In the present study, catalytic combustion of hydrogen-air premixture in a millimeter scale monolith coated with Pt catalyst was investigated. As the combustor size decreases, the heat loss increases in proportion with the inverse of the scale of combustion chamber and combustion efficiency decreases in a conventional type of combustor. Combustion reaction assisted by catalyst can reduce the heat loss by decreasing the reaction temperature at which catalytic conversion takes place. Another advantage of catalytic combustion is that ignition is not required. Platinum was coated by incipient wetness method on a millimeter scale monolith with cell size of $1{\times}1mm$. Using this monolith as the core of the reaction chamber, temperatures were recorded at various locations along the flow direction. Burnt gas was passed to a gas chromatography system to measure the hydrogen content after the reaction. The measurements were made at various volume flow rate of the fuel-air premixture. The gas chromatography results showed the reaction was complete at all the test conditions and the reacting species penetrated the laminar boundary layer at the honeycomb and made contact with the catalyst coated surface. At all the measuring locations, the record showed monotonous increase of temperature during the measurement duration. And the temperature profile showed that the peak temperature is reached at the point nearest to the gas inlet and decreasing temperature along the flow direction.

  • PDF