• Title/Summary/Keyword: Reaction conditions optimization

Search Result 237, Processing Time 0.025 seconds

Study on the Industrial Process of Rubber Anti-oxidant RD

  • Liu, Yu;Gao, Qinyu;Liu, Lianxin;Shi, Guangxia
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.830-834
    • /
    • 2011
  • This paper is on the industrial synthesis process of anti-oxidant RD ((2,2,4-trimethyl-1,2-dihydroquinoline polymer $(C_{12}H_{15}N)_n$. n=2-4)).The content of dimer, trimer and tetramer of RD as the inspection targets, using the orthogonal design method - take the ratios of keto-amine, the reaction time, the reaction temperatures and the ratios of catalyst acid-amine as inspect factors - to optimized the reaction condition. The results indicate that the best ratio of keto-amine is 2:1, the time of salification and condensation is 3 hours and 7.5 hours. The range of temperature of salification and condensation is $135^{\circ}C$ and $120-125^{\circ}C$, and that the best ratio of acid-amine is 0.2: 1 (the proportion is the concentration ratio for mole). Under the optimization conditions, the yield of RD was stabilized and content of RD more than 45%.

The Effect of Distance between Two Transducers on Sonochemical Reactions in Dual Irradiation Systems (이중 초음파 조사 시스템에서 진동부 사이의 거리가 초음파 화학 반응에 미치는 영향)

  • Kim, Eunkyung;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.39-45
    • /
    • 2013
  • Many researchers have studied the effectiveness of ultrasound in chemical and environmental engineering fields including material synthesis, pollutant removal, cleaning, extraction, and disinfection. Acoustic cavitation induced by ultrasound irradiation in aqueous phase can cause various sonophysical and sonochemical reactions without any chemicals. However most of the previous studies focused only on the relationships between ultrasonic conditions and the results of sonochemical reactions in lab-scale sonoreactors. As a results of this, only a few studies have been devoted to design and optimization of industrial scale sonoreactors. In this study, the effect of the distance between two opposite transducer modules on sonochemical reactions was investigated in single and dual irradiation systems (334 kHz) for four distances including 50, 100, 150, and 200 mm using KI dosimetry. It was found that the dual irradiation systems provided higher performance in terms of the zeroth reaction coefficient and the cavitation yield compared to the single irradiation systems. The sonochemiluminescence (SCL) images for the visualization of the cavitation field showed that cavitation active zone was larger and sonochemical reaction intensity was much higher in the dual irradiation system than in the single irradiation system.

Optimization of Preparing Poly(AM-DMDAAC)/MMT Superabsorbent Nanocomposite by Orthogonal Experiment (Orthogonal 방법을 통한 Poly(AM-DMDAAC)/MMT 고흡수성 나노복합체 제조 연구)

  • Zhou, Ming;Yang, Shuangqiao;Zhou, Yongguo;Qin, Nan;He, Songtao;Lai, Dong;Xie, Zhongqiang;Yuan, Jundong
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.16-23
    • /
    • 2014
  • A novel poly(AM-DMDAAC)/MMT superabsorbent nanocomposites are prepared by radical polymerization using ammonium persulfate (APS) and anhydrous sodium sulfite as a free radical initiator and N,N-methylene bisacrylamide (MBA) as a crosslinker. In this paper, an optimization study on the synthesis of superabsorbent nanocomposites is carried out. Orthogonal array experiment indicates that the optimized conditions is acrylamide (AM) content 23 wt%, diallyl dimethyl ammonium chloride (DMDAAAC) content 6 wt%, montmorillonite (MMT) content 4 wt%, initiator content 0.2 wt% and crosslinker content 0.02 wt%. Under the optimization syntheses conditions concluded, the maximum water absorbency in distilled water is $659.53g{\cdot}g^{-1}$ and in 2 wt% sodium chloride solution is $116.25g{\cdot}g^{-1}$. Compared with the range values of different factors ($R_j$), the order of significance factors in distilled water is C (MMT) > B (DMDAAC) > A (AM) > D (crosslinker) > E (initiator). MMT is intercalated during polymerization reaction and a nanocomposite structure is formed as shown by TEM analysis and XRD analysis.

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.

Conversion of Red-macroalgae Eucheuma spinosum to Platform Chemicals Under Ferric Chloride-catalyzed Hydrothermal Reaction (Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.293-300
    • /
    • 2020
  • Eucheuma spinosum, red macro-algae, contains carrageenan as the major polysaccharide and is commercially produced in Indonesia, Malaysia, Philippines, China and Tanzania. In this study, E. spinosum was converted to sugar and platform chemicals (5-HMF, levulinic acid, formic acid) via FeCl3-catalytic hydrothermal reaction. In addition, statistical methodology (3-level 3-factor Box-Behnken design) was applied to optimize and evaluate the effects of reaction factors (reaction temperature, catalyst concentration and reaction time). As a result of optimization, the concentration of 5-HMF was obtained to be 2.96 g/L at 160 ℃, 0.4 M FeCl3 and 10 min. Optimal conditions of levulinic and formic acids were determined at 200 ℃, 0.6 M FeCl3 and 30 min, and the concentrations were obtained to be 4.26 g/L and 3.77 g/L, respectively.

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

Flavor Improvement of a Complex Extract from Poor-quality, Individually Quick-frozen Oysters Crassostrea gigas (IQF 굴(Crassostrea gigas) 복합엑스분의 추출 및 풍미개선)

  • Hwang, Seok-Min;Hwang, Young-Suk;Nam, Hyeon-Gyu;Lee, Jae-Dong;Ryu, Seong-Gwi;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.733-739
    • /
    • 2014
  • To develop an effective use for poor-quality individually quick-frozen (IQF) oysters Crassostrea gigas stored for a long period, the extract conditions, quality characteristics, and optimum reaction flavoring (RF) conditions of a complex extract from these IQF oysters were investigated. The moisture, pH, and volatile basic nitrogen contents of IQF oysters stored for 18 months (18M-IQFO) were 77.9%, 6.32, and 17.9 mg/100 g, respectively. Three different kinds of extract were prepared from 18M-IQFO: a hot-water extract (HE), scrap enzymatic hydrolysate (EH), and complex extract (CE). The respective extracts contained 5.5, 8.6, and 6.6% crude protein and 281.7, 366.0, and 343.0 mg/100 g amino nitrogen, and had 811, 359, and 1,170 mL/kg extraction yields. The CE was superior to the traditional HE in terms of the extraction yield, amino-nitrogen content, and organoleptic qualities, except for the odor. To improve flavor via the Maillard reaction, the reaction system used to produce a desirable flavor comprised CE (Brix $30^{\circ}$), 0.4 M glucose, 0.4 M glycine, and 0.4 M cysteine solution (4:2:1:1, v/v). The reaction time and pH were the independent variables, and the sensory scores for baked potato odor, masking shellfish odor, and boiled meat odor were the dependent variables. The surface response methodology (RSM) analysis of the multiple responses optimization gave a reaction time of 120.6 minutes and pH 7.33 at $120^{\circ}C$. The reaction improved the flavor of CE considerably, as compared to that of the unreacted extract.

Optimization of 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol Produced via Lipase-catalyzed Esterification Using the Response Surface Methodology (Camellia Oil로부터 1(3)-Palmitoyl-2-Oleoyl-3(1)-Stearoyl Glycerol을 함유한 효소적 합성반응물의 최적화 연구)

  • Hwang, Yun-Ik;Shin, Jung-Ah;Lee, Jeung-Hee;Hong, Soon-Taek;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.721-728
    • /
    • 2011
  • 1(3)-palmitoyl-2-oleoyl-3(1)-stearoyl-(POS)-glycerol-enriched reaction products were synthesized from camellia oil, palmitic ethyl ester, and stearic ethyl ester via lipase-catalyzed interesterification. Response surface methodology (RSM) was employed to optimize the production of the POS-enriched reaction product (Y1, %) and the stearicand palmitic-acid contents at the sn-2 position due to acyl migration (Y2, %). The reaction factors were the enzyme amount (X1, 2-6%), reaction time (X2, 60-360 min), and substrate molar ratio of camellia oil to palmitic ethyl ester and stearic ethyl ester (X3, 1-3 mol). The predictive models for Y1 and Y2 were adequate and reproducible as no lack of fit was signified (0.128 and 0.237) and as there were satisfactory levels of R2 (0.968 and 0.990, respectively). The optimal conditions for the reaction product for maximizing Y1 while minimizing Y2 were predicted at the reaction combination of 5.86% enzyme amount, 60 min reaction time, and 1:3 substrate molar ratio (3 moles of palmitic ethyl ester and 3 moles of stearic ethyl ester). Actual reaction was performed under the same conditions as above, and the resulting product contained 20.19% TAG-P/O/S and 12.71% saturated fatty acids at the sn-2 position.

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density (빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링)

  • Yun, Yeong-Sang;Park, Jong-Mun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • The influenced of light intensity, cell density, and light pathlength on photosynthetic activity of Chlorella vulgaris were investigated. Since the light respon curve varied according to reaction conditions, the parameters estimated from nonlinear regression were proved to be apparent and could not be applied to various situations. The light response model incorporating the light penetration through the microalgal suspension was developed based upon the spatial distribution of the photosynthetic activity. This model showed a good agreement with experimental data at different cell densities and light intensities. Using the model the effects of cell density and light pathlenth were simulated and some dicussions about optimization of operation conditions of photobioreactors were carried out. Concludingly, the developed model can be useful for predicting microalgal photosynthesis and for determining the optimal operating conditions.

  • PDF